我国房地产价格波动与供需状态的影响分析
本文选题:房地产价格与供需 + Bootstrap估计回归 ; 参考:《首都经济贸易大学》2013年硕士论文
【摘要】:近年来,我国房地产行业面临着严峻形势与挑战,房地产价格波动及供需发展状况等问题已成为当前人们所关注的热点话题,诸多研究者针对该领域的相关问题进行了较为深入的定性分析,得到了一系列积极的结果。本文从数理统计角度,尝试借助适用的统计方法定量地剖析房地产价格波动问题、供需状况与价格间影响关系问题,探求房地产市场发展规律、价格及供需相互影响作用下的发展趋势等。 本文主要内容包括: 1.定量分析房地产价格的内涵及特殊性、价格与供需状况间主要影响因素。 2.运用Bootstrap估计回归模型和分位数回归模型相结合的思想建立房地产价格波动模型,该模型可有效给出房地产市场价格波动的变化规律,分析价格波动的主要影响因素,及不同价格水平下的区域差异。 3.将三种经典统计方法-灰色系统GM (1, N)、神经网络、马尔科夫链融合,建立了房地产供需状况模型,用于研究供需与价格及其他影响因素间的变化规律,该融合模型发挥了各经典方法的优势,使得模型分析结果更为合理、适用。 4.应用R及EVIEWS等软件,对所建模型予以分析及检验,给出模型预测。 由房地产价格波动与供需状态模型分析及预测结果可得出:①我国房地产市场具有特殊的发展趋势,价格对供需有显著的正作用,有效需求与价格间同时存在着一定程度的反向作用,供给对需求有刺激性作用,进而影响房地产市场价格。②不同省份或地区的价格与主要影响因素保持着较稳定的内在关系,但存在差异性。③2013-2015年房地产市场价格与供需模型预测结果显示:近年来房地产价格与供需保持持续增长趋势;2014-2015年市场需求预测值较接近,表明其需求增速放缓,供给有加速增长态势,2014年左右两者数量上有缩小的趋势,,反映出房地产市场未来会逐渐向供求均衡状态发展,是市场可持续性发展的有利信号,房地产市场拥有着美好的发展前景。
[Abstract]:In recent years, the real estate industry in our country is facing severe situation and challenge. The fluctuation of real estate price and the development of supply and demand have become a hot topic that people pay close attention to.Many researchers have carried on the thorough qualitative analysis to the related problems in this field, and obtained a series of positive results.From the angle of mathematical statistics, this paper attempts to analyze quantitatively the fluctuation of real estate price, the relationship between supply and demand and price, and to explore the law of the development of real estate market with the help of applicable statistical methods.Price and supply and demand interaction under the development trend.The main contents of this paper are as follows:1.Quantitative analysis of the connotation and particularity of real estate prices, price and supply and demand between the main factors.2.A real estate price fluctuation model is established by combining the Bootstrap regression model with the quantile regression model. The model can effectively give the changing law of the real estate market price fluctuation and analyze the main influencing factors of the real estate price fluctuation.And regional differences at different price levels.3.In this paper, three classical statistical methods-grey system GM 1, Nu, neural network and Markov chain are combined to establish a real estate supply and demand model, which is used to study the changing law between supply and demand, price and other influencing factors.The fusion model gives play to the advantages of the classical methods and makes the model analysis more reasonable and applicable.4.Using R and EVIEWS software, the model is analyzed and tested, and the model prediction is given.According to the analysis and prediction results of real estate price fluctuation and supply and demand state model, it can be concluded that the real estate market in China has a special development trend, and the price has a significant positive effect on supply and demand.There exists a certain degree of reverse effect between effective demand and price, supply stimulates demand, and then affects the price of real estate market. 2. The price of different provinces or regions maintains a relatively stable internal relationship with the main influencing factors.However, there is a difference between real estate market price and supply and demand model in 2013-2015. The results show that: in recent years, real estate prices and supply and demand maintain a sustained growth trend and 2014-2015 market demand forecast value is close, indicating that its demand growth rate is slowing down.Supply has accelerated growth, and the number of the two has been shrinking around 2014, reflecting the fact that the real estate market will gradually develop towards a state of equilibrium between supply and demand in the future, which is a favorable signal for the sustainable development of the market.The real estate market has a bright future.
【学位授予单位】:首都经济贸易大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F224;F299.23
【参考文献】
相关期刊论文 前10条
1 侯亮;吴永生;;论城市房价与人口变动的互动关系——基于北京、深圳、成都数据的实证分析[J];北方经济;2009年16期
2 盛松成;货币政策能否调控房地产价格[J];银行家;2003年09期
3 王朝;;基于灰色系统理论的房地产行业研究[J];东方企业文化;2011年22期
4 代长明;杜春梅;李建华;李艳芳;;神经网络文字识别系统研究[J];河北建筑工程学院学报;2009年01期
5 李连光;葛新锋;李丽;;一个基于供求两方面的房价决定模型[J];中北大学学报(社会科学版);2009年03期
6 吴耀华,赵林城;线性模型中随机加权自助法的大样本研究[J];中国科学(A辑);1999年07期
7 许光建;魏义方;戴李元;赵宇;;中国城市住房价格变动影响因素分析[J];经济理论与经济管理;2010年08期
8 李海洋;;影响商品住宅价格的因素分析——以银川市为例[J];宁夏社会科学;2010年04期
9 赖小倩;徐麦君;;房价与地价关系研究[J];商场现代化;2006年33期
10 谢建豪;袁伟伟;;浅析房地产市场的成长发育规律[J];商业时代;2007年33期
相关博士学位论文 前1条
1 关静;分位数回归理论及其应用[D];天津大学;2009年
相关硕士学位论文 前7条
1 吴明锋;房地产价格波动性研究[D];华中农业大学;2010年
2 申志涛;基于灰色系统预测理论的商品住宅价格分析[D];大连理工大学;2010年
3 徐尚蕾;Bootstrap算法在基因预测中的阈值选取研究[D];电子科技大学;2011年
4 徐鹏涛;商品房销售量预测模型研究[D];西安建筑科技大学;2006年
5 陈莹;MRS组合预测模型在房价预测中的应用研究[D];武汉理工大学;2008年
6 张利;线性分位数回归模型及其应用[D];天津大学;2009年
7 张育斌;武汉市商品住宅价格影响因素研究[D];华中农业大学;2012年
本文编号:1752575
本文链接:https://www.wllwen.com/jingjilunwen/zbyz/1752575.html