水基润滑液润滑建模及摩擦学性能研究
本文关键词:水基润滑液润滑建模及摩擦学性能研究 出处:《北京交通大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 水基润滑液 薄膜润滑 滑块 径向滑动轴承 压力分布 承载能力
【摘要】:随着当今世界石油消耗的不断加剧,水基润滑液作为—种环境友好型润滑剂得到迅速发展,其在微型机械、生物关节、金属加工等领域具有良好的应用前景。本文首先在薄膜润滑状态下对水基润滑液的黏度变化进行了线性逼近,并在此基础上推导出了润滑方程。然后在水基润滑状态下对滑块的特性进行分析。讨论了无限长滑块和有限长滑块的压力分布和承载能力随吸附层厚度、壁面黏度和入口区润滑膜厚度的变化关系。研究表明:楔形间隙所形成的润滑膜的压力和承载能力均随吸附层厚度和壁面黏度的增大而不断增大,但变化不尽相同;当入口区膜厚在某一范围内变化时,压力和承载能力均随其增大而不断增大,但是入口区膜厚大于一定值后二者基本不再随之变化。最后在水基润滑状态下对径向滑动轴承的特性进行分析。分别讨论了吸附层厚度、壁面黏度、偏心率和宽径比对径向滑动轴承的润滑膜压力分布、承载能力和偏位角的影响。结果表明:径向滑动轴承的润滑膜压力均随吸附层厚度、壁面黏度和偏心率增大不断增大;对于有限长径向滑动轴承,压力随着宽径比增加而不断增大。当偏心率和宽径比较小时,径向滑动轴承的承载能力随吸附层厚度和壁面黏度的变化较小,随着偏心率和宽径比逐渐增大,承载能力的变化越来越明显:承载能力随偏心率和宽径比增加亦不断增大。径向滑动轴承的偏位角随偏心率增加而减小;当偏心率较小时偏位角基本不随吸附层厚度和壁面黏度变化而变化,随着偏心率不断增大,偏位角均随二者的增加而不断减小;有限长径向滑动轴承的偏位角随宽径比的变化甚微。本文在薄膜润滑状态下,对水基润滑的滑块和径向滑动轴承的特性进行了分析,为水基润滑液的应用奠定了坚实的理论基础。
[Abstract]:With the increasing oil consumption in the world, water-based lubricating fluid as a kind of environment-friendly lubricant has been developed rapidly in micro-machinery, biological joints. Metal processing and other fields have good application prospects. Firstly, the viscosity of water-based lubricating fluid is approximated linearly under the condition of thin film lubrication. On this basis, the lubrication equation is derived, and then the characteristics of the slider are analyzed under the condition of water-based lubrication. The pressure distribution and bearing capacity of the infinite slider and the finite slider with the thickness of the adsorption layer are discussed. The relationship between the wall viscosity and the thickness of the lubricating film in the inlet region. The results show that the pressure and the bearing capacity of the lubricating film formed by the wedge clearance increase with the increase of the thickness of the adsorption layer and the viscosity of the wall. But the change is not the same; When the thickness of the film in the inlet region changes in a certain range, the pressure and the bearing capacity increase with the increase of the film thickness. However, the film thickness of the inlet area is larger than a certain value and the two will not change. Finally, the characteristics of the radial sliding bearing are analyzed under the water base lubrication. The thickness of the adsorption layer and the viscosity of the wall are discussed respectively. The effects of eccentricity and ratio of width to diameter on the pressure distribution, bearing capacity and offset angle of the lubricating film of radial sliding bearing are discussed. The results show that the pressure of lubrication film of radial sliding bearing all depends on the thickness of the adsorption layer. The wall viscosity and eccentricity are increasing. For the finite radial sliding bearing, the pressure increases with the ratio of width to diameter. When the ratio of eccentricity and width is small, the bearing capacity of radial sliding bearing changes little with the thickness of the adsorption layer and the viscosity of the wall. With the increasing of eccentricity and width-diameter ratio, the change of bearing capacity becomes more and more obvious: the bearing capacity increases with the increase of eccentricity and width-diameter ratio, and the offset angle of radial sliding bearing decreases with the increase of eccentricity. When the eccentricity is small, the deviation angle does not change with the thickness of the adsorption layer and the viscosity of the wall, but with the increasing of the eccentricity, the deviation angle decreases with the increase of the eccentricity. The deviation angle of finite length radial sliding bearing has little change with the ratio of width to diameter. In this paper, the characteristics of water-base lubricated slider and radial sliding bearing are analyzed under the condition of film lubrication. It lays a solid theoretical foundation for the application of water-based lubricating fluid.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH117.22
【参考文献】
相关期刊论文 前10条
1 熊丽萍;卢慧;钟青玉;何忠义;雷娟红;朱星星;;含硫磷的水溶性三嗪添加剂对硬质合金的摩擦学性能研究[J];润滑与密封;2016年07期
2 谷国平;张朝辉;丁晓峰;;椰油酰胺聚氧乙烯醚水溶液的摩擦学性能研究[J];摩擦学学报;2015年03期
3 乔玉林;赵海朝;臧艳;张庆;;石墨烯负载纳米Fe_3O_4复合材料的摩擦学性能[J];无机材料学报;2015年01期
4 何建国;张朝辉;刘思思;周杰;凡炼文;;含氮硼蓖麻油聚氧乙烯醚水溶液的摩擦学特性[J];机械工程学报;2014年23期
5 刘维民;郭志光;;形色各异的摩擦磨损与润滑[J];自然杂志;2014年04期
6 张素梅;郭培红;朱建安;温小萍;;水基纳米液压液抗磨减摩性能研究[J];摩擦学学报;2014年02期
7 尹伟;段京华;孙军;施炜;柴晓辉;;滑动轴承润滑分析中的边界条件[J];轴承;2013年12期
8 王亚杰;仲剑初;王洪志;;三乙醇胺硼酸酯的合成及其防锈性能[J];材料保护;2013年11期
9 王晓雷;刘海叶;黄巍;;水润滑材料的发展状况及其趋势[J];机械制造与自动化;2013年04期
10 LIU YuHong;WANG XiaoKang;PAN GuoShun;LUO JianBin;;A comparative study between graphene oxide and diamond nanoparticles as water-based lubricating additives[J];Science China(Technological Sciences);2013年01期
相关硕士学位论文 前7条
1 王磊;脂肪醇聚氧乙烯醚与三乙醇胺硼酸酯水溶液的摩擦学性能研究[D];北京交通大学;2016年
2 黄宝成;丙二醇聚醚与油酰三乙醇胺复配水溶液的摩擦学性能研究[D];北京交通大学;2015年
3 苏恒;碳氮化合物薄膜的制备及其水中摩擦和腐蚀性的研究[D];南京航空航天大学;2012年
4 孙跃涛;无规共聚醚水基润滑液的摩擦学性能试验研究[D];北京交通大学;2011年
5 刘俊铭;聚氧乙烯基醚水基润滑液摩擦学特性研究[D];北京交通大学;2010年
6 董春柳;过渡层模型及其润滑性能研究[D];北京交通大学;2008年
7 王宁;基于MATLAB的滑动轴承压力分布的数值计算[D];大连理工大学;2006年
,本文编号:1393744
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1393744.html