弹性支承薄壁内齿圈两级行星传动系统的动力学理论与实验研究
发布时间:2018-03-06 09:00
本文选题:弹性支承 切入点:薄壁内齿圈 出处:《华南理工大学》2016年博士论文 论文类型:学位论文
【摘要】:从能量密度和均载观点来看,内齿圈的轮缘厚度对行星传动的功重比和均载特性有较大影响,而内齿圈的支承刚度不仅影响行星传动的均载特性还影响系统的动态特性等,本文针对某混合动力耦合系统双离合两档行星齿轮传动机构的结构特点,围绕弹性支承薄壁内齿圈两级行星传动系统的动力学问题进行了相关研究,在传动系统动力学建模、动力学特性以及实验等方面,进行了深入研究,主要内容包括以下几个方面:将弹性支承结构简化为切向和径向刚度约束,薄壁内齿圈视为标准圆环建立了仅考虑其面内无延展弯曲振动的运动微分方程,在计入第Ⅱ级内齿圈的弹性及分析传动机构各构件的相对位移,考虑行星轮位置相角、齿轮副啮合刚度的时变性建立第Ⅰ级行星传动平移-扭转动力学模型,通过级间耦合的方法推导出弹性支承薄壁内齿圈两级行星传动系统各构件的运动微分方程,整理出两级行星传动系统的刚度矩阵,分析内外啮合刚度波动情况,为后文的研究工作奠定基础。计算了不同行星轮个数传动系统的固有频率,发现了系统固有频率和振动模式与行星轮个数有关,归纳总结出传动系统7种振动模式:Ⅰ/Ⅱ级耦合扭转振动模式、Ⅰ级平移振动模式、Ⅰ级行星轮振动模式、Ⅱ级平移振动模式、Ⅱ级行星轮简并振动模式、Ⅱ级行星轮单根振动模式和纯内齿圈振动模式,具体分析了此7种振动模式的特性。采用有限差分法并结合模态能量研究了四行星轮传动系统的固有频率对各级齿轮副啮合刚度及级间耦合刚度的灵敏度,分析了传动系统固有频率受第Ⅱ级内齿圈径向支承刚度和弯曲刚度变化的影响程度,研究发现各刚度参数对传动系统固有频率的影响程度不尽相同,但规律性明显,初步探讨了模态跃迁现象。采用数值法求解了传动系统的动力学微分方程,着重分析了第Ⅰ级、第Ⅱ级内齿圈及各级行星轮的振动位移时域和频域响应特性,重点研究了第Ⅱ级内齿圈径向支承刚度、弯曲刚度和级间耦合刚度及工况条件变化对系统的动态特性影响规律,得出了系统刚度参数和工况条件变化对传动系统的动态特性的影响规律。在传动系统动态特性理论研究基础上,搭建了传动系统振动实验平台,实验研究了第Ⅱ级内齿圈径向支承刚度和弯曲刚度及工况条件变化对传动系统振动特性的影响,研究发现在中、低工况条件下,增大第Ⅱ级内齿圈的径向支承刚度和弯曲刚度可在一定程度上抑制传动系统的振动,工况条件分别对第Ⅰ级、第Ⅱ级行星传动的影响不尽相同。
[Abstract]:From the point of view of energy density and load equalization, the thickness of inner gear rim has a great influence on the power / weight ratio and load sharing characteristics of planetary transmission, while the supporting stiffness of inner gear ring affects not only the load sharing characteristics of planetary transmission, but also the dynamic characteristics of the system, etc. In this paper, according to the structural characteristics of a hybrid power coupling system with double clutch and two gear gears, the dynamics of the two-stage planetary transmission system with elastic support thin-walled inner gear ring is studied, and the dynamic model of the transmission system is established. The dynamic characteristics and experimental results are studied in detail. The main contents are as follows: the elastic support structure is simplified to tangential and radial stiffness constraints. The thin-walled inner ring is regarded as a standard ring. A differential equation of motion is established which only takes into account the in-plane bending vibration without extension. Considering the elasticity of the second class inner ring and the relative displacement of the components of the transmission mechanism, the phase angle of the position of the planetary gear is considered. The dynamic model of translation and torsion of the first stage planetary transmission is established by the time-variant of the meshing stiffness of the gear pair. The differential equations of motion of the components of the two-stage planetary transmission system with thin-walled inner gear ring with elastic support are derived by the method of interstage coupling. The stiffness matrix of the two-stage planetary transmission system is sorted out, and the fluctuation of the internal and external meshing stiffness is analyzed, which lays a foundation for the later research work. The natural frequencies of different planetary gear number transmission systems are calculated. It is found that the natural frequency and vibration mode of the system are related to the number of planetary wheels, and seven vibration modes of transmission system are summarized: 鈪,
本文编号:1574171
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1574171.html