基于Abaqus的PEO-LiX与铝阳极键合应力应变模拟研究
本文选题:MEMS 切入点:阳极键合 出处:《太原科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:微机电系统(MEMS)的出现是源于微型制造技术的发展。它的出现也开辟了一个新型的产业和领域。MEMS封装技术是目前最重要的任务之一,也是MEMS能否走向国际化市场和在生产中广泛应用的影响因素之一。阳极键合技术作为MEMS器件加工的主要键合技术之一,被广泛应用于各个领域。目前实现了多种功能材料之间的键合,如玻璃与硅、陶瓷与金属。而高分子固体电解质克服了玻璃和陶瓷抗冲击性差等缺点,其抗腐蚀、致密、质轻和塑性好等优点应用在阳极键合技术中有很大的前景。为了促进阳极键合技术在微机电系统封装环节的使用,开发一种高分子固体电解质代替原有的封装键合材料。设计利用聚氧化乙烯(PEO)作为基体,碱金属锂盐(LiClO4、LiPF6、LiBF4)作为电解质材料,利用高能球磨法对材料混粉进行研磨,使之充分络合,并分析其在不同制备参数下材料导电性的变化。最终利用PEO与LiClO4按质量比为10:1,在球磨转速为250 r/min、球磨时间为8小时、球料比为7:1时,所得材料导电性最佳。将铝箔与所制备的高分子固体电解质PEO-LiClO4进行阳极键合试验,分析健合界面,有过渡层产生,这也是阳极键合成功的关键。说明所制备离子导电聚合物PEO-LiClO4满足阳极键合要求。采用有限元分析软件Abaqus,以高分子固体电解质与铝单层键合为基础,分析研究阳极键合后的冷却过程中所产生的残余应力和变形,研究分析可知:键合试件的变形从上表面到下表面逐渐增大,越远离中心其变形量越大。键合试件的等效应力在过渡层上最大,且从中间过渡层向高分子固体电解质层和铝层急剧减小。对不同的过渡层厚度、键合结构、冷却时间、键合温度(冷却初始温度)情况下键合试件进行数值模拟,通过数据分析软件Origin对所得到的最大变形和最大应力值进行分组对比以及对所得的有限的数据进行数学建模和曲线拟合、函数推导。研究分析可知:试件的变形随着键合试件中间过度层、键合温度的增大而增大;试件键合界面应力随着键合试件中间过度层厚度的减小,键合温度的增大而增大。键合结构为圆形结构比方形结构可获得更小变形,方形结构比圆形结构可获得更小键合界面的应力;键合后PEO-LiClO4层发生塑性变形,在铝层和中间过渡层属在材料的弹性形变内,发生弹性形变。
[Abstract]:The emergence of MEMS (MEMS) is a result of the development of micro manufacturing technology. It also opens up a new industry and field. MEMS packaging technology is one of the most important Ren Wuzhi at present. The anodic bonding technology is one of the main bonding technologies in the processing of MEMS devices, and it is also one of the factors that influence whether MEMS can move to the international market and be widely used in production. It has been widely used in various fields. At present, the bonding between various functional materials, such as glass and silicon, ceramics and metals, has been realized. The polymer solid electrolyte has overcome the disadvantages of poor impact resistance of glass and ceramics, and its corrosion resistance is dense. In order to promote the application of anode bonding technology in MEMS packaging, the advantages of light weight and good plasticity have great prospects. A polymer solid electrolyte was developed to replace the original encapsulation bonding material. Poly (ethylene oxide) (PEO) was used as matrix and alkaline metal LiClO _ 4 (LiCl _ 4) LiPF6O _ (6) LiBF _ 4) as electrolyte material. The powder was ground by high-energy ball milling method to make it fully complexate. Finally, when the mass ratio of PEO and LiClO4 is 10: 1, the milling speed is 250rmin, the milling time is 8 hours and the ratio of ball to material is 7: 1. The anode bonding test of aluminum foil with the prepared polymer solid electrolyte (PEO-LiClO4) was carried out to analyze the bonding interface and the transition layer was produced. This is also the key to the success of anodic bonding. It is shown that the ionic conductive polymer PEO-LiClO4 can meet the requirements of anodic bonding. The finite element analysis software Abaqusis used to bond solid polymer electrolytes with aluminum monolayer. The residual stress and deformation produced by the cooling process after the anode bonding are analyzed. The results show that the deformation of the bonding specimen increases gradually from the upper surface to the lower surface. The higher the center, the greater the deformation. The equivalent stress of the bonding specimen is the largest in the transition layer, and the transition layer from the intermediate transition layer to the polymer solid electrolyte layer and aluminum layer decreases sharply. For different thickness of transition layer, bonding structure, cooling time, In the case of bonding temperature (cooling initial temperature), the bonding specimen is numerically simulated. The maximum deformation and maximum stress are grouped and compared by the data analysis software Origin, and the finite data are modeled and fitted by the curve. The results show that the deformation of the specimen increases with the increase of the bonding temperature and the interfacial stress decreases with the thickness of the intermediate layer of the bonding specimen. The bonding temperature increases with the increase of the bonding temperature. The circular structure can obtain smaller deformation than the square structure, and the square structure can obtain the stress of the smaller bonding interface than the circular structure, and the plastic deformation of the PEO-LiClO4 layer occurs after bonding. Elastic deformation occurs in the aluminum layer and the intermediate transition layer within the elastic deformation of the material.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH-39
【参考文献】
相关期刊论文 前10条
1 李雪梅;王春玲;;微机电系统的未来趋势[J];科教文汇(下旬刊);2016年04期
2 冯帆;;微机电系统的发展与应用[J];科技创新与应用;2015年19期
3 刘锦;;微机电系统技术的发展趋势研究[J];机电产品开发与创新;2008年04期
4 刘翠荣;孟庆森;鲁小莹;刘子建;;ZrO_2电解质陶瓷与Al的阳极键合连接机理分析[J];机械工程学报;2008年05期
5 潘开林;李鹏;宁叶香;颜毅林;;微机电系统封装技术[J];微细加工技术;2008年01期
6 陈仕国;戈早川;杨海朋;白晓军;;聚合物基电子封装复合材料研究进展[J];宇航材料工艺;2007年05期
7 葛文勋;丛鹏;;微机电系统发展动向[J];纳米技术与精密工程;2007年03期
8 徐军民;王瑞金;杨娅君;;微机电系统磁流体压力微传感器[J];机电工程;2007年04期
9 段柏华;曲选辉;林冰涛;秦明礼;程彤;;Invar合金电子封装零件的制备及性能[J];电子元件与材料;2007年04期
10 曹欣;李宏;杜芸;;阳极键合强度及其评价方法[J];传感器与微系统;2007年03期
相关博士学位论文 前2条
1 王立仕;锂离子电池纳米复合聚合物电解质的制备及性能研究[D];北京化工大学;2009年
2 朱福龙;基于工艺力学的MEMS封装若干基础问题研究[D];华中科技大学;2007年
相关硕士学位论文 前5条
1 南粤;离子导电聚合物与铝阳极键合界面应力应变数值模拟研究[D];太原科技大学;2015年
2 程琳;高能球磨法制备Mg_2SiO_4、AWO_4(A=Ca,,Ba,Sr)纳米粉体及其陶瓷微波介电性能的研究[D];陕西师范大学;2012年
3 贾托胜;五层玻璃与铝静电键合机理及应力数值模拟[D];太原科技大学;2011年
4 郭劲言;SiO_2-Na2O-AlO功能玻璃与金属的共阳极键合试验研究[D];太原理工大学;2010年
5 简德湘;高能球磨法制备AgSnO_2电接触材料的研究[D];天津大学;2004年
本文编号:1579380
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1579380.html