金属光热微驱动器的驱动理论及实验研究
本文选题:微机电系统(MEMS) 切入点:激光 出处:《浙江大学》2016年博士论文 论文类型:学位论文
【摘要】:随着微机电系统不断地朝着小型化和系统功能集成化方向发展,微驱动技术获得了巨大的关注和发展,相继涌现了静电、电磁、压电、电热、光热型微驱动技术,其中光热微驱动器技术结构简单、操控简便、驱动力大、可实现远程控制、易于小型化和集成化,具有广泛的应用前景。通常光热微驱动器采用光刻胶,高密度聚乙烯等聚合物作为驱动材料,但这些聚合物材料在结构强度、耐热性、可靠性、以及动态响应等方面表现不理想。为此,本文提出了以金属作为驱动材料的新型光热微驱动器,克服聚合物光热微驱动器的这些局限性。利用LIGA技术(一种X射线深度光刻技术)研制了三角形、棘轮棘爪光热微马达和蠕动式爬行机构等多种金属光热微驱动机构,并对其进行了理论和实验研究。本文对光热膨胀机制和光热徽驱动技术开展了系统的研究,建立了光热徽膨胀臂在激光作用下受热膨胀伸长的稳态和瞬态模型。首先研究了光热膨胀效应中涉及到的激光吸收、热传导、对流换热、热辐射和热膨胀等物理现象,初步讨论了他们在光热膨胀效应中的作用。在此基础上,建立了光热热膨胀效应的稳态模型和瞬态模型,以微膨胀臂为例,推导了稳态和瞬态的温度场分布和形变计算公式,计算了在连续或脉冲激光作用下微膨胀臂的温度分布与形变量。设计并研制了多种金属光热徽驱动机构。在光热膨胀理论模型的基础上,设计了多种光热微驱动器:三角形光热微驱动器、棘轮棘爪光热微马达,蠕动光热爬行机构,并利用LIGA技术,在北京同步辐射光源LIGA线站制备了这些微驱动器。搭建并优化了光热徽驱动器的驱动控制与显微观测系统。驱动控制与显微观测系统系统由驱动控制模块与显微观测模块构成,驱动控制模块由激光器和调节光路组成,能够调节激光波形并准确将激光汇聚在驱动位置实现微驱动;显微观测模块包含驱动监控功能与驱动分析功能,基于图像匹配算法的软件能够分析视频准确描绘微驱动器的驱动曲线。研究了一种三角形金属光热徽驱动器的驱动特性。首先阐述了三角形光热微驱动器的结构与驱动原理,接着利用有限元分析的方法分析了在连续激光或脉冲激光作用下,微驱动器所产生的瞬态温度分布和膨胀伸长,研究了在不同频率激光作用下,微驱动器的动态响应特性,并利用金属镍制备的微驱动器开展了相应的实验研究,结果与理论相吻合。最后,分析了材料性能和几何尺寸等关键参数对光热微驱动器驱动性能的影响和贡献。开展了新型棘轮棘爪光热马达的理论和实验研究,提出了一种蠕动光热爬行机构。首先详细阐述了棘轮棘爪光热马达的机械结构和驱动机制,能够将光热膨胀提供的直线往复驱动转变为齿轮转动,然后用LIGA技术制备了光热马达,并开展了实验研究,初步验证了将光能直接转变为转动的机械能输出的构想,开创了光能利用的新思路。最后,设计了一种能够在激光驱动下整体向前步进蠕动的光热爬行机构。
[Abstract]:With the development of microelectromechanical system constantly towards miniaturization and integrated development, micro drive technology has obtained the enormous attention and development have emerged, electrostatic, electromagnetic, piezoelectric, electric, thermal micro drive technology, the thermal micro actuator technology has the advantages of simple structure, convenient operation, large driving force, can be realized remote control, easy miniaturization and integration, and has wide application prospect. Usually photothermal microactuators using the photoresist, high density polyethylene polymer as the driving materials, but these polymer materials in structural strength, heat resistance, reliability, and dynamic response performance is not ideal. Therefore, as the metal is put forward in this paper. A new thermal driven micro actuator materials, polymer to overcome these limitations of photothermal micro actuators. By using the technology of LIGA (a deep X ray lithography) Research Triangle, ratchet and pawl Photo thermal micro motor and peristaltic creeping mechanism of various metals such as photothermal micro actuators, and has carried on the theoretical and experimental research. The photo thermal expansion mechanism and thermal Huizhou driving technology to carry out a systematic study on the thermal expansion arm, the establishment of Huizhou under the action of laser thermal expansion of the steady and transient model. Firstly, elongation laser photothermal involves the absorption and expansion effect in heat conduction, heat convection, heat radiation and other physical phenomena and thermal expansion, discussed them in the photo thermal expansion effect. On this basis, the establishment of steady-state model and transient model of photothermal thermal expansion effect, the micro expansion arm as an example, calculation the formula of temperature field distribution and deformation of steady state and transient state, calculate the temperature distribution in continuous or micro expansion arm with variable shaped laser pulses. Design and development of a variety of metal thermal emblem driving machine Based on photo thermal expansion structure. On the theoretical model, design a variety of photothermal micro actuators: Triangle photothermal micro actuators, micro thermal ratchet motor, thermal peristaltic crawling mechanism, and the use of LIGA technology in Beijing synchrotron radiation source LIGA lines of these micro drive station was set up. The preparation and optimization of the drive control and microscopic observation system the emblem of photothermal drive. Driving control and microscopic observation system by the drive control module and micro observation module, drive control module is composed of laser and light path adjustment, can adjust the laser waveform and accurate laser gathering in the driving position to realize micro drive; micro observation module includes a drive control function and driving function analysis, image matching algorithm the software can accurately describe the video analysis of driving curve of micro actuator based on research. A triangular metal thermal drive drive emblem Dynamic characteristic. First describes the structure and driving principle of triangle photothermal microactuators, then using finite element method analysis of the continuous laser or pulsed laser irradiation, produced by the micro drive transient temperature distribution and expansion elongation, were investigated in different frequency excitation light under the action of dynamic response of the micro actuator, and the use of micro drive metal nickel prepared and carried out the corresponding experimental studies, the results coincide with theoretical analysis. Finally, the influence of key parameters, material properties and geometry of photothermal micro actuators driving performance and contribution. The theoretical and experimental study on new type thermal ratchet pawl motor, a peristaltic creeping mechanism of the thermal put forward. First elaborated the mechanical structure and drive motor thermal ratchet pawl mechanism, to provide the photo thermal expansion into linear reciprocating drive gear, Then use the LIGA technique to prepare thermal motor, and the experimental study was carried out, a preliminary validation of the idea of energy directly to output is a rotating machinery, creating new ideas of light utilization. Finally, a design can drive the photothermal crawling mechanism overall step forward peristalsis in the laser.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TH-39
【相似文献】
相关期刊论文 前10条
1 张振昭;杨宜民;刘曦;;带圆弧缺口机构的微驱动器的研究[J];广东工学院学报;1992年02期
2 宫峰飞;微驱动器的原理与应用[J];电子元件与材料;2003年06期
3 周砚江;潘科荣;陈军;杨涛;陈本永;;电磁悬浮式微驱动器的有限元分析研究[J];仪器仪表学报;2009年09期
4 田文超;陈志强;山磊;;新型低电压大变形微驱动器数值求解及仿真[J];计算物理;2014年02期
5 梁磊;王少萍;焦宗夏;曹锋;;微驱动器的研究与发展[J];机械设计与制造;2008年07期
6 章海军;赵冬伟;伊福廷;王波;张冬仙;;基于准分子激光微加工的光热微驱动器(英文)[J];纳米技术与精密工程;2011年05期
7 张永顺;微型管内机器人的发展现状与展望[J];制造业自动化;2000年12期
8 刘红忠,丁玉成,李涤尘,卢秉恒,李寒松;多维微驱动器纳米定位系统的研究[J];信息与控制;2002年05期
9 杨旭霞,陈道炯,单世宝,高春雨,韦光辉;压电式微驱动器的应用研究[J];上海理工大学学报;2005年05期
10 张永顺;国外微型管内机器人的发展[J];机器人;2000年06期
相关会议论文 前1条
1 孙东明;董玮;刘彩霞;王国东;陈维友;;扭臂式静电微驱动器的pull-in现象分析[A];全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C];2005年
相关博士学位论文 前4条
1 张礼华;压电纤维微驱动器的基础研究及其应用[D];江苏大学;2015年
2 史斌;金属光热微驱动器的驱动理论及实验研究[D];浙江大学;2016年
3 邱成军;基于MEMS技术新型压电微驱动器的研制[D];哈尔滨工程大学;2005年
4 孙东明;扭臂结构的MEMS静电微驱动器的特性研究[D];吉林大学;2006年
相关硕士学位论文 前10条
1 杨莉莉;基于FPGA的精密微驱动器测控系统研究[D];浙江理工大学;2015年
2 郑煌晏;基于硅基氮化镓的静电梳状微驱动器的设计和仿真分析[D];南京邮电大学;2015年
3 任森;一种压电式面内MEMS驱动器的拓扑优化设计研究[D];北方工业大学;2016年
4 刘昕;用于硅基氮化镓可调微镜的梳齿型微驱动器的研究[D];南京邮电大学;2016年
5 张小波;新型电热微驱动器的研究[D];上海交通大学;2010年
6 李雪梅;屈曲型微驱动器的设计与分析[D];西安电子科技大学;2011年
7 阮红芳;基于纵横弯曲的微驱动器分析设计[D];西安电子科技大学;2012年
8 山磊;硅基微驱动器的建模与分析[D];西安电子科技大学;2013年
9 曾文光;新型复合结构电热微驱动器[D];上海交通大学;2008年
10 张丹;聚合物基(SU-8)面外运动电热微驱动器[D];上海交通大学;2008年
,本文编号:1641844
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1641844.html