三自由度分布柔度式平面柔顺机构运动特性与控制研究
本文选题:分布柔度式平面柔顺机构 切入点:运动学 出处:《江西理工大学》2017年硕士论文
【摘要】:精密定位技术应用非常广泛,它在纳米技术、生物工程、光学组件定位等技术研究领域中的基础性关键技术,在这些领域中发挥着重要作用,也是保证精密定位的关键技术支撑。同时精密定位技术在科学技术发展的今天,应用领域得到了进一步的扩展,这使得精密定位平台的定位精度要求越来越高。因此,研究高精度的精密定位平台有着非常重要的理论价值和实际意义。本文在以柔性并联机构为理论指导的基础上,结合拓扑学理论对于所设计的分布柔度式平面柔顺机构的综合性能进行分析,并设计控制器对分布柔度式平面柔顺机构动平台的跟踪轨迹精度进行控制。具体内容如下:(1)以分布柔度式平面柔顺机构为研究对象。分别介绍了柔性并联机构与分布柔度式平面柔顺机构的特点,通过闭环矢量法对分布柔度式平面柔顺机构的运动学进行分析。运用所得到的运动学方程,对机构的工作空间进行求解,获得了分布柔度式平面柔顺机构末端执行器所到点的集合,即为所求的工作空间。并且利用三维分析软件对机构的运动进行仿真分析,结果证明了所选构型运动学模型的有效性。(2)利用对柔性并联机构动力学方程的求解方法,使用拉格朗日方法以及假设模态法对于分布柔度式平面柔顺机构的动力学方程进行求解。通过三维分析软件对机构进行模态分析,得到机构前三阶模态的固有频率与振型。结果表明在分布柔度式平面柔顺机构的动力学模型的建立上是有效的。(3)基于分布柔度式平面柔顺机构的输入输出雅克比矩阵,设计了自抗扰控制器。将分布柔度式平面柔顺机构的动力学耦合以及外界干扰视为总扰动,通过对扩张状态观测器的设计对其进行补偿,并与机构在传统PID控制的条件下进行对比。实现了分布柔度式平面柔顺机构的高精度控制。仿真结果表明自抗扰控制优于传统PID控制,满足系统的性能要求,并证明了所设计控制器的可行性。(4)对于所设计的分布柔度式平面柔顺机构加工并进行实验。得出了机构的轨迹跟踪位移曲线,并通过与机构的理论值进行对比分析,证明所设计的分布柔度式平面柔顺机构可实现亚微米级定位。
[Abstract]:Precision positioning technology is widely used. It plays an important role in the fields of nanotechnology, bioengineering, optical component positioning and so on.It is also the key technical support to ensure precision positioning.At the same time, with the development of science and technology, the application field of precision positioning technology has been further expanded, which makes the precision of precision positioning platform more and more demanding.Therefore, the research of high-precision precision positioning platform has very important theoretical value and practical significance.Based on the theory of flexible parallel mechanism and topology theory, this paper analyzes the comprehensive performance of the designed distributed flexibility planar compliant mechanism.A controller is designed to control the tracking accuracy of a distributed compliance planar compliant mechanism.The main contents are as follows: (1) the distributed flexibility planar compliant mechanism is taken as the object of study.The characteristics of flexible parallel mechanism and distributed flexibility planar compliant mechanism are introduced, and the kinematics of distributed compliance planar compliant mechanism is analyzed by means of closed loop vector method.By using the kinematics equation, the workspace of the mechanism is solved, and the set of points reached by the terminal actuator of the planar compliant mechanism with distributed flexibility is obtained, that is, the desired workspace.The kinematics of the mechanism is simulated by using three-dimensional analysis software. The results show that the kinematics model of the selected configuration is effective and the dynamic equation of the flexible parallel mechanism is solved by using the method of solving the dynamic equation of the flexible parallel mechanism.The Lagrangian method and the assumed mode method are used to solve the dynamic equations of the distributed compliance planar compliant mechanism.The natural frequency and mode shape of the first three modes of the mechanism are obtained by the modal analysis of the mechanism with 3D analysis software.The results show that the dynamic model of the distributed compliance planar compliant mechanism is effective. Based on the input and output Jacobis matrix of the distributed compliance plane compliant mechanism, an active disturbance rejection controller is designed.The dynamic coupling and external disturbance of the distributed compliance planar compliant mechanism are considered as total disturbances. The extended state observer is designed to compensate the mechanism and the mechanism is compared with the traditional PID control condition.The high precision control of distributed flexibility planar compliant mechanism is realized.The simulation results show that the ADRC is superior to the traditional PID control and meets the performance requirements of the system. The feasibility of the designed controller is proved.The trajectory tracking displacement curve of the mechanism is obtained and compared with the theoretical value of the mechanism. It is proved that the designed distributed flexibility planar compliant mechanism can achieve sub-micron positioning.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH112
【参考文献】
相关期刊论文 前10条
1 高志强;;自抗扰控制思想探究[J];控制理论与应用;2013年12期
2 陈强;黄勇;胡晓娟;;并联机器人控制方法研究现状[J];机械工程师;2010年02期
3 陈根良;王皓;来新民;林忠钦;;基于广义坐标形式牛顿-欧拉方法的空间并联机构动力学正问题分析[J];机械工程学报;2009年07期
4 杜兆才;余跃庆;张绪平;;平面柔性并联机器人动力学建模[J];机械工程学报;2007年09期
5 纪恩庆;肖维荣;;二阶自抗扰控制器的参数简化[J];自动化仪表;2007年05期
6 徐妍;冯雅丽;张文明;;深海铰接式扬矿系统的动力学建模与试验验证[J];金属矿山;2007年01期
7 孙立宁,董为,杜志江;基于大行程柔性铰链的并联机器人刚度分析[J];机械工程学报;2005年08期
8 颜樖,朱大昌;环路螺旋理论在并联机器人机构分析中的运用[J];机电产品开发与创新;2005年03期
9 节德刚,孙立宁,曲东升,王力,蔡鹤皋;压电陶瓷微位移系统的模糊PID控制方法[J];哈尔滨工业大学学报;2005年02期
10 孔令富,张世辉,肖文辉,李成元,黄真;基于牛顿—欧拉方法的6-PUS并联机构刚体动力学模型[J];机器人;2004年05期
相关博士学位论文 前4条
1 刘玮;一种直线电机驱动的六棱锥式并联机器人研究[D];南京理工大学;2012年
2 郝齐;一种两自由度并联机构优化设计及动力学控制研究[D];清华大学;2011年
3 刘丽英;线性自抗扰控制策略在异步电机调速系统中的应用研究[D];天津大学;2010年
4 李鹭扬;6-SPS型并联机床若干关键理论研究[D];南京航空航天大学;2007年
相关硕士学位论文 前2条
1 张航;基于自抗扰的路面扰动控制技术研究[D];北京理工大学;2015年
2 莫贤;基于螺旋理论的3-PRS并联机构的运动学建模及仿真[D];扬州大学;2009年
,本文编号:1697801
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1697801.html