混合驱动机电一体化系统建模与控制
发布时间:2018-04-12 08:52
本文选题:混合驱动 + 五杆机构 ; 参考:《湖南科技大学》2017年硕士论文
【摘要】:混合驱动机电一体化系统是一种半柔性系统。它采用两种不同类型的电机驱动,即普通的常速电机和伺服电机,通过混合驱动机构进行耦合,由终端执行器实现半柔性输出运动。混合驱动系统介于传统的刚性机器和现代化的全柔性机器之间,它弥补了传统刚性机器柔性不足和全柔性机器造价昂贵的特点。因此对这类半柔性机器进行研究具有重要的理论意义和应用价值。混合驱动系统到目前经历了二十多年的发展,在其构型及运动规律的分析和综合上已有大量的学者进行了研究。由于常速电机速度波动且不可控的问题,目前在对混合驱动系统的控制上的研究并不多。本文首先探讨了满足混合驱动的五杆机构构型、可动性、及其工作空间分析;设计了一个双曲柄五杆机构,并且建立了机构的三维模型,为后面的控制系统仿真分析提供了结构参数。正运动学分析及逆运动学分析是研究五杆机构动力学及控制系统的理论基础。本文用封闭矢量法建立了五杆机构的运动学模型,分析了终端轨迹与各个杆件之间的运动关系。利用拉格朗日方程推导出五杆机构的动力学模型,并且写成类似于开链机械手动力学方程的形式,便于控制器的设计和控制参数的选择;简单分析了电机的动力学模型,与五杆机构的动力学模型结合,建立了完整的混合驱动机电一体化系统的模型,为实现其控制打下了基础。轨迹跟踪精度和轮廓跟踪精度是衡量混合驱动系统控制器的重要指标。以往针对混合驱动系统开发的控制器都没有彻底解决常速电机不可控的问题。本文首次采用自适应比例微分滑模控制,通过补偿常速电机的速度波动,从而提升终端执行器的轨迹性能,并且对控制器进行了稳定性分析。选用了直线轨迹和圆弧轨迹进行仿真分析,并与比例微分滑模控制和纯比例微分控制进行了对比,分析了不同控制参数对控制器性能的影响,及在初始误差情况下的控制性能,验证了自适应比例微分滑模控制具有优越的轨迹跟踪控制性能。最后介绍了位置域控制的概念及优点,提出了位置域的自适应比例微分滑模控制,并应用于混合驱动系统的轮廓跟踪控制,这一控制器同样选用直线轮廓和圆弧轮廓进行仿真分析。结果表明位置域自适应比例微分滑模控制能极大的提升混合驱动系统的轮廓跟踪精度,并且控制器具有很好的鲁棒性和快速响应能力。
[Abstract]:Hybrid drive mechatronics system is a semi-flexible system.It uses two different types of motor drive, namely, ordinary constant speed motor and servomotor. It is coupled by a hybrid drive mechanism, and the semi-flexible output motion is realized by the terminal actuator.The hybrid drive system is between the traditional rigid machine and the modern fully flexible machine, which makes up for the lack of flexibility of the traditional rigid machine and the expensive cost of the fully flexible machine.Therefore, the study of this kind of semi-flexible machine has important theoretical significance and application value.The hybrid drive system has been developed for more than 20 years, and a large number of scholars have studied on the analysis and synthesis of its configuration and motion law.Due to the speed fluctuation and uncontrollable problem of constant speed motor, there are few researches on the control of hybrid drive system.In this paper, the configuration, mobility and workspace analysis of a hybrid driven five-bar mechanism are discussed, a two-crank five-bar mechanism is designed, and a three-dimensional model of the mechanism is established.The structure parameters are provided for the simulation analysis of the control system.Forward kinematics analysis and inverse kinematics analysis are the theoretical basis for studying dynamics and control system of five-bar mechanism.In this paper, the kinematics model of the five-bar mechanism is established by using the closed vector method, and the kinematic relationship between the terminal trajectory and each member is analyzed.The dynamic model of the five-bar mechanism is derived by using Lagrange equation, and it is written in a form similar to that of open-chain manipulator, which is convenient for the design of controller and the choice of control parameters, and the dynamic model of motor is simply analyzed.Combined with the dynamic model of the five-bar mechanism, a complete model of the hybrid drive mechatronics system is established, which lays a foundation for its control.Trajectory tracking accuracy and contour tracking accuracy are important indexes to measure the controller of hybrid drive system.In the past, the controller developed for hybrid drive system has not completely solved the uncontrollable problem of constant speed motor.In this paper, adaptive proportional differential sliding mode control is used for the first time. By compensating the speed fluctuation of the constant speed motor, the trajectory performance of the terminal actuator is improved, and the stability of the controller is analyzed.The linear trajectory and arc trajectory are selected for simulation analysis, and compared with proportional differential sliding mode control and pure proportional differential control, the influence of different control parameters on controller performance and the control performance under initial error are analyzed.It is proved that adaptive proportional differential sliding mode control has superior trajectory tracking control performance.Finally, the concept and advantages of position domain control are introduced, and the adaptive proportional differential sliding mode control in position domain is proposed, which is applied to the contour tracking control of hybrid drive system.This controller also chooses the straight line contour and the arc contour to carry on the simulation analysis.The results show that the adaptive proportional differential sliding mode control in position domain can greatly improve the contour tracking accuracy of hybrid drive system, and the controller has good robustness and fast response ability.
【学位授予单位】:湖南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH-39
【参考文献】
相关期刊论文 前10条
1 訾斌;朱真才;曹建斌;;混合驱动柔索并联机器人的设计与分析[J];机械工程学报;2011年17期
2 李仁军;刘宏昭;李鹏飞;单宁;;混合驱动机构给定运动轨迹的生成与检测实验研究[J];机械科学与技术;2008年12期
3 陈正洪;王勇;;混合驱动五杆机构的滑模变结构控制[J];机床与液压;2007年11期
4 陈昕;张策;宋轶民;;混合驱动机械系统在考虑速度波动情况下的重新规划[J];机械设计与研究;2006年01期
5 王生泽,沈玉娟,张程;变结构连杆机构的动力学分析与设计[J];中国机械工程;2002年03期
6 张新华,张策,田汉民;混合驱动机械系统建模的理论依据[J];机械科学与技术;2001年06期
7 张新华,张策,田汉民;混合驱动机构的创新设计及其应用[J];机械设计与研究;2001年03期
8 田汉民,张新华,张策;混合输入五杆机构的综合与应用[J];机械科学与技术;2001年04期
9 周双林,邹慧君,姚燕安,郭为忠;混合输入五杆机构运动性能的分析[J];机械设计与研究;2001年01期
10 邹慧君,蓝兆辉,王石刚,郭为忠;机构学研究现状、发展趋势和应用前景[J];机械工程学报;1999年05期
,本文编号:1739038
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1739038.html