当前位置:主页 > 科技论文 > 机电工程论文 >

固液两相流中离心泵叶片磨损及能量损失特性分析

发布时间:2018-04-12 23:11

  本文选题:离心泵 + 固相浓度 ; 参考:《兰州理工大学》2017年硕士论文


【摘要】:离心泵在农业、渔业、化工、水电厂、能源与动力工程所在的生活应用和工程应用中使用广泛,而离心泵在固液两相流中的应用主要瓶颈在于过流部件的磨损、能量损失以及泵运行稳定性。本文以导叶式离心泵为研究对象,采用标准k-?湍流模型和Mixture多相流模型进行全流道固液两相流数值模拟,在不同固相粒径(0.016mm、0.036mm、0.076mm、0.15mm)与体积分数(2%、4%、8%、12%)下,首先计算出叶轮各监测点上的磨损量,并对磨损较严重的部位进行摩擦磨损强度和碰撞磨损强度的定量计算,然后通过流体微团的相对能量转子焓(Rothalpy)值,做出从叶片前缘到出口的能量变化曲线来确定能量损失的大小,最后采用大涡模拟研究了泵流道内各监测点处的压力脉动特性,得出如下结论:1.从叶片前缘到出口,压力面上的相对速度出现先减小后增大的趋势,吸力面上的相对速度出现先增大后减小,出口处又增大的趋势。颗粒直径和固相体积分数在一定范围内变化时其对应的相对速度变化不大。2.磨损最严重的部位发生在靠近吸力面进口附近流域处,其次为叶片前缘和压力面后盖板流线出口处,压力面和吸力面出口处的磨损也较大,压力面前盖板流线头部和出口处的磨损较小。3.从叶片前缘到出口,Rothalpy值总体增大。在同一监测点上,叶片压力面上的Rothalpy值大于吸力面,叶片压力面前半段,沿叶轮径向方向流体微团逐渐获得能量。压力面后半段能量损失逐渐增大,压力面出口边流体微团获得的能量减小,出口处能量损失较大。在叶片吸力面沿叶轮径向方向,流体微团不断获得能量,靠近吸力面进口附近流域,流体微团获得的能量最小,吸力面出口边流体微团获得的能量减小,出口处能量损失较大。4.随着颗粒直径的增大,压力脉动幅值逐渐减小,固液两相介质时的压力脉动波形比清水介质时的波形出现滞后现象。压力脉动受固相体积分数变化的影响较小。
[Abstract]:Centrifugal pumps are widely used in agriculture, fishery, chemical industry, hydropower plants, energy and power engineering applications and engineering applications. The main bottleneck of centrifugal pumps in solid-liquid two-phase flow is the wear of flow components.Energy loss and pump stability.In this paper, the guide vane centrifugal pump is used as the research object.The friction and wear strength and impact wear strength of the seriously worn parts are calculated quantitatively, and then the rotorpyy values of the relative energy rotor enthalpy of the fluid microparticles are calculated.The energy change curve from the vane leading edge to the outlet is made to determine the magnitude of energy loss. Finally, the pressure pulsation characteristics at various monitoring points in the pump passage are studied by using large eddy simulation, and the following conclusions are drawn as follows: 1.From the leading edge of the blade to the outlet, the relative velocity on the pressure surface decreases first and then increases, and the relative velocity on the suction surface increases first and then decreases, and then increases at the outlet.When the particle diameter and solid volume fraction change in a certain range, the relative velocity of the particle changes little. 2.The most serious wear occurred near the drainage area near the entrance of suction surface, followed by the outlet of streamline line of blade front and back cover plate, and the wear of pressure surface and suction surface outlet was also larger.Pressure front cover streamline head and outlet wear is smaller. 3.The value of Rothalpy increases from the leading edge of the leaf to the outlet.At the same monitoring point, the Rothalpy value on the blade pressure surface is larger than that on the suction surface, and the energy is gradually obtained by the fluid microparticles along the radial direction of the impeller.The energy loss in the second half of the pressure surface increases gradually, and the energy at the outlet of the pressure surface decreases, and the energy loss at the outlet is larger.In the radial direction of the blade suction surface, the fluid microspheres continuously obtain energy. Near the inlet of the suction surface, the energy obtained by the fluid microspheres is the smallest, the energy obtained by the fluid microspheres at the suction surface exit edge decreases, and the energy loss at the outlet is larger than that at the outlet.With the increase of particle diameter, the amplitude of pressure pulsation decreases gradually, and the wave form of pressure pulsation in solid-liquid two-phase medium is hysteresis compared with that in water medium.The pressure fluctuation is less affected by the change of volume fraction of solid phase.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH311

【参考文献】

相关期刊论文 前10条

1 王凡;钱忠东;郭志伟;郜元勇;;可调导叶式轴流泵压力脉动数值分析[J];农业机械学报;2017年03期

2 罗亮;张师帅;;基于两种固液两相流模型的渣浆泵叶片磨损预测[J];水泵技术;2016年06期

3 朱迪;肖若富;陶然;刘伟超;;水泵水轮机泵工况非设计工况流态与压力脉动分析[J];农业机械学报;2016年12期

4 李伟;季磊磊;施卫东;周岭;平元峰;;不同流量工况下混流泵压力脉动试验[J];农业机械学报;2016年12期

5 王家斌;陈佳;袁寿其;裴吉;孟凡;;双吸双蜗壳离心泵隔舌处的压力脉动特性[J];排灌机械工程学报;2016年04期

6 黄思;邹文朗;周锦驹;何东萍;彭天阳;;基于DPM模型的离心泵非定常固液两相流及磨损计算(英文)[J];机床与液压;2016年06期

7 黄剑峰;张立翔;姚激;龙立焱;;水轮机泥沙磨损两相湍流场数值模拟[J];排灌机械工程学报;2016年02期

8 翟杰;祝宝山;李凯;王旭鹤;曹树良;;低比转数混流泵导叶内部压力脉动特性研究[J];农业机械学报;2016年06期

9 李仁年;胡鹏林;黎义斌;毕祯;周栋;;叶顶间隙对斜流泵进口压力脉动影响的数值分析[J];排灌机械工程学报;2015年07期

10 韩伟;金毅;李仁年;岳婷;权辉;;颗粒对离心泵内部压力脉动特性的影响[J];排灌机械工程学报;2015年06期

相关博士学位论文 前3条

1 苗森春;离心泵作液力透平的能量转换特性及叶轮优化研究[D];兰州理工大学;2016年

2 李f3;离心泵内部固液两相流动数值模拟与磨损特性研究[D];浙江理工大学;2014年

3 程效锐;螺旋离心泵内能量转换特性及设计方法研究[D];兰州理工大学;2014年

相关硕士学位论文 前3条

1 权辉;螺旋离心泵内部流动和能量转换机理的研究[D];兰州理工大学;2012年

2 钱晨;低比转速离心泵圆盘损失计算的探讨及内部流动特征的数值分析[D];兰州理工大学;2012年

3 汪艺义;科氏力在小尺度液固两相流中对固体颗粒运动影响的研究[D];新疆农业大学;2010年



本文编号:1741847

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1741847.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9d2f2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com