当前位置:主页 > 科技论文 > 机电工程论文 >

水冷式磁流变传动装置研究

发布时间:2018-05-28 08:27

  本文选题:磁流变传动 + 磁流变液 ; 参考:《中国矿业大学》2017年硕士论文


【摘要】:磁流变传动是一种新型的动力传递形式,利用磁流变液的流变效应传递动力,可通过调节外加磁场的强度改变输出转矩的大小;磁流变传动装置是磁流变传动技术的具体应用,与传统的传动装置相比具有反应迅速可逆、能耗低以及控制简单等特点,在机械传动领域有广阔的应用前景。针对当前磁流变传动技术存在的问题,本文将对以下几个方面的内容进行研究,以期为磁流变传动技术向大功率发展提供支持。根据磁流变传动的特点,提出了一种磁流变传动散热方案;结合水冷式磁流变传动装置的技术要求,基于电磁学基本理论,对传动装置进行了磁路的设计与计算,确定了装置的总体结构和主要参数,得到了一种水冷式磁流变传动装置。介绍了电磁场的基本理论和计算方法,采用有限元分析软件ANSYS对传动装置进行磁路仿真,得到不同励磁电流下传动装置磁场的总体分布,并对工作空间中磁感应强度的分布特点以及影响因素进行了分析。结果表明,磁力线基本约束在磁路内,且工作空间磁感应强度分布均匀;当电流为2.0A时,工作磁感应强度可达到0.56T,能够满足磁路设计要求。根据温度场计算方程,利用ANSYS对水冷式磁流变传动装置进行稳态和瞬态温度场仿真;分析了传动装置的许用滑差功率,并探究了滑差功率和冷却水的温度对磁流变液温度的影响。结果表明,在磁流变液适用温度范围内(-25~130℃),设计的水冷式磁流变传动装置的理论传递功率可达12.5kW;当滑差功率为7.5kW,冷却水温度为25℃时,磁流变液的最高温度仅为70℃。以设计的水冷式磁流变传动装置为基础,搭建了水冷式磁流变传动性能实验台,开展了磁流变传动装置的动力传递、动态响应以及温升特性实验研究;并探究了磁流变液温度和散热方式对装置传递转矩的影响。结果表明,采用的水冷散热方式能够有效控制传动装置的温升。论文最后对所做的工作进行总结,并对相关的技术研究进行展望。
[Abstract]:Magnetorheological transmission is a new type of power transmission, which can change the output torque by adjusting the strength of the external magnetic field by using the rheological effect of the magnetorheological fluid, and the magneto-rheological transmission device is the concrete application of the magneto-rheological transmission technology. Compared with the traditional transmission device, it has the characteristics of quick reaction and reversible reaction, low energy consumption and simple control, so it has a broad application prospect in the field of mechanical transmission. In view of the problems existing in the current magnetorheological transmission technology, the following aspects will be studied in this paper, in order to provide support for the development of magneto-rheological transmission technology to high power. According to the characteristics of magnetorheological transmission, a heat dissipation scheme of MRF transmission is put forward, and the magnetic circuit is designed and calculated based on the basic theory of electromagnetism combined with the technical requirements of water-cooled MRF transmission device. The overall structure and main parameters of the device are determined, and a water-cooled magnetorheological transmission device is obtained. The basic theory and calculation method of electromagnetic field are introduced. The magnetic circuit simulation of the transmission device is carried out by using the finite element analysis software ANSYS, and the total magnetic field distribution of the transmission device under different excitation current is obtained. The distribution characteristics and influencing factors of magnetic induction intensity in workspace are analyzed. The results show that the magnetic field line is basically confined in the magnetic circuit, and the magnetic induction intensity in the workspace is uniform, and when the current is 2.0 A, the working magnetic induction intensity can reach 0.56 T, which can meet the design requirements of the magnetic circuit. According to the calculation equation of temperature field, the steady and transient temperature fields of water-cooled magnetorheological transmission are simulated by ANSYS, and the allowable slip power of the transmission is analyzed. The effects of slip power and cooling water temperature on the temperature of magnetorheological fluid were investigated. The results show that the theoretical transfer power of the designed water-cooled MRF can reach 12.5 kW within the suitable temperature range of -25 鈩,

本文编号:1946006

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1946006.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fbd25***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com