当前位置:主页 > 科技论文 > 机电工程论文 >

摆线齿准双曲面齿轮齿面啮合性能分析及设计技术研究

发布时间:2018-07-03 21:50

  本文选题:摆线齿 + 准双曲面齿轮 ; 参考:《西北工业大学》2015年博士论文


【摘要】:长幅外摆线等高齿(简称摆线齿)准双曲面齿轮采用连续分度的端面滚齿法加工,加工一对齿轮副只需要两台切齿机床、两把刀以及两次装卸,与圆弧渐缩齿准双曲面齿轮的单分度端面铣齿法相比,生产效率得到极大提高,并且降低了劳动强度,减少了所需设备和刀具种类。该类齿轮副还具有传动平稳、噪声小、承载能力强等一系列优点,因此特别适用于大批量生产的汽车行业。在欧美广泛应用于各类轻重型卡车以及SUV等的车桥齿轮传动中。随着我国汽车工业的高速发展以及与欧美日韩汽车企业的合作日益密切,先进的摆线齿准双曲面齿轮加工工艺以及成套的加工、测量、磨刀、调刀设备逐步被引进到国内大型汽车企业,这类齿轮应用越来越广泛,人们也逐渐对其优越性有所认识。但是,由于历史原因,国内长期专注于圆弧渐缩齿,忽视了对摆线等高齿的研究,并且由于国外企业的技术封锁,使得我国在摆线等高齿的先进设计制造方面远远落后于欧美发达国家,可以说基本处于起步阶段,这严重制约着自主设计制造水平的提高以及工艺改进。基于此,本文主要针对车桥用奥利康制摆线齿准双曲面齿轮,从齿面啮合性能分析和齿面设计方法两方面进行了系统研究,并编制了一套完整的设计分析软件,本文主要研究成果如下:(1)摆线齿准双曲面齿轮齿面建模以及接触分析。计算了摆线齿准双曲面齿轮齿坯几何参数和切齿加工参数,建立了适用于克林贝格制和奥利康制的齿面加工仿真方法,考虑刀刃圆弧和刀尖圆弧,建立了包括工作齿面以及齿根过渡曲面在内的完整齿面模型。基于微分几何以及啮合原理,推导了摆线齿准双曲面齿轮配对齿面啮合的基本公式,提出了新的瞬时接触椭圆计算方法,并给出了边缘接触的几何分析方法。结合齿轮几何分析和力学分析,建立了摆线齿准双曲面齿轮轮齿承载接触分析模型,在此基础上分析了接触应力和弯曲应力过程并提出了一种新的齿轮副时变啮合刚度计算方法。(2)摆线齿准双曲面齿轮齿面误差敏感性分析及预修正。运用文中建立的齿面模型,通过定量施加扰动的方法,分析了包括刀具参数、刀盘参数、机床设置参数以及滚比修正运动参数在内的各个加工参数对齿面拓扑的影响规律,获得了对齿面误差影响较大的加工参数组合。建立了摆线齿准双曲面齿轮齿面误差预修正优化模型,并采用序列二次规划算法对模型进行求解,得到各加工参数调整量。(3)摆线齿准双曲面齿轮齿面主动设计。基于共轭原理,以大轮理论齿面作为假想产形轮,在啮合坐标系中按照预置的转角运动关系,展成与之线接触并满足预置传动误差曲线的小轮辅助齿面,然后对小轮辅助齿面沿各啮合线方向按照预置的接触印痕所确定的三段抛物线修形曲线进行修形,获得了满足预置啮合性能的小轮目标齿面。建立了以小轮齿面与目标齿面法向误差平方和最小为目标的优化模型,并引入权重系数来控制双面法加工的两侧齿面的逼近程度,从而可以选择性地保证某侧齿面的啮合性能。最后运用序列二次规划算法求解该模型,得到了小轮加工参数调整量。该方法基于理论齿面,为设计阶段主动控制双面法加工的摆线齿及其他齿轮两侧齿面的啮合性能提供了一个有效的途径。(4)基于测量的摆线齿准双曲面齿轮实际齿面啮合性能分析及主动设计。基于高精度齿轮测量中心测得的齿面离散坐标点,研究了实际齿面拟合的原理和方法。提取拟合齿面的型值点,通过控制顶点和权因子求解,获得了实测齿面的拟合齿面及其参数化表示,并验证了曲面拟合的精度。建立并求解了实际齿面啮合仿真分析数学模型。与传统的滚动检测相比,实际齿面啮合仿真分析在获得齿面接触印痕的同时还可以获得传动误差曲线,比较全面地反映了实际齿面的啮合信息,并且避免了以实际齿面的滚检印痕来验证理论齿面的仿真结果会出现的评价基准不一致的问题。提出了应用于试制阶段的、基于实际齿面的摆线齿准双曲面齿轮齿面主动设计方法,综合考虑了大、小轮齿面由于机加工误差和热处理变形所导致的偏差,只需要对小轮齿面进行一次修正便可以获得预期的啮合性能,这对于缩短试制周期是十分有利的。(5)试验及对比分析验证。以奥利康制Spirac法某高速车桥齿轮副为例,进行了切齿、齿面测量、滚检试验以及理论齿面建模、几何接触分析和齿面主动设计验证,将本文仿真方法所获得的结果与试验结果以及克林贝格最新版螺旋锥齿轮设计分析软件KIMoS5的仿真结果进行了对比分析,验证了本文齿面建模方法、理论齿面几何接触分析方法、齿面主动设计方法、实际齿面啮合仿真分析方法的有效性和可行性。
[Abstract]:Long amplitude cycloid and other high teeth (cycloid) hypoid hyperbolic gears are machined by a continuous indexing gear hobbing method. A pair of pair gear pairs need only two gear cutting machines, two knives and two loading and unloading, and the production efficiency is greatly improved and the production efficiency is greatly improved, and the production efficiency is greatly improved. This kind of gear pair also has a series of advantages, such as smooth transmission, small noise and strong bearing capacity, so it is especially suitable for mass production of automobile industry. In Europe and America, it is widely used in the axle gear drive of various light heavy trucks and SUV. With the rapid development of China's automobile industry. As well as the cooperation with European and American automobile enterprises in Japan and South Korea, the advanced cycloid tooth hyperboloid gear processing technology and complete processing, measuring, grinding knife and knife adjusting equipment are gradually introduced to large domestic automobile enterprises. The application of this kind of gear is becoming more and more widely used, and people are gradually aware of their advantages. However, because of historical reasons For a long time, we have focused on the circular arc shrinking teeth and neglected the research on the high teeth of cycloid and so on. And because of the technical blockade of foreign enterprises, the advanced design and manufacture of cycloid and other high teeth are far behind the developed countries in Europe and America. It can be said that it is basically in the beginning stage, which seriously restricts the improvement of the level of independent design and manufacture, as well as the improvement of the level of independent design and manufacture. On the basis of this, this paper mainly aims at the system research of the hypoid gear with hypoid hypoid of cycloid gear with oli Kang made from two aspects, from the tooth surface meshing performance analysis and the tooth surface design method, and has compiled a complete set of design and analysis software. The main research results of this paper are as follows: (1) the modeling and connection of the hypoid gear tooth surface of the Cycloid Teeth. The geometric parameters and the machining parameters of the hypoid tooth billet of hypoid gear teeth of cycloid teeth are calculated. A simulation method for the machining of tooth surface is established, which is suitable for the kindberger system and orkang system. A complete tooth surface model, including the working tooth surface and the tooth root transition surface, is established. The basic formula of the pair tooth surface meshing of hypoid hypoid gears with Cycloid Teeth is derived, and a new method of calculating the instantaneous contact ellipse is put forward, and the geometric analysis method of the edge contact is given. The contact analysis model of the cycloid tooth quasi double surface gear tooth is established by combining with the gear geometric analysis and mechanical analysis. On this basis, the model of the gear tooth contact analysis is established. The contact stress and the bending stress process are analyzed and a new method for calculating the time varying meshing stiffness of gear pair is proposed. (2) the sensitivity analysis and pre correction of the error of the hypoid gear tooth surface of the Cycloid Teeth. The tool parameters, the tool disk parameters and the machine tool setting are analyzed by the method of quantitative perturbation. The parameters and the influence of all processing parameters on the tooth surface topology, including the roll ratio correction parameters, have obtained the combination of the machining parameters which have great influence on the tooth surface error. The pre correction optimization model of the tooth surface error of the hypoid gear tooth is established, and the two time sequence programming algorithm is used to solve the model, and the processing parameters are obtained. (3) active design of hypoid gear tooth surface of Cycloid Teeth. Based on the principle of conjugation, the theoretical tooth surface of large wheel is used as a hypothetical shape wheel. In the meshing coordinate system, the small wheel auxiliary tooth surface is formed in contact with the line and satisfies the prepositioned transmission error curve in the meshing coordinate system, and then the auxiliary tooth surface along the meshing side is along the meshing side. The shape of the three segment parabolic curve fixed according to the preset contact impression is repaired, and the small wheel target tooth surface is obtained to meet the preposition meshing performance. An optimization model is set up with the minimum square sum of the normal error of the small wheel tooth surface and the target tooth surface, and the weight coefficient is introduced to control the approximation of both sides of the tooth surface processed by the double sided method. In the end, the meshing performance of a side tooth surface can be guaranteed selectively. Finally, the two time sequence programming algorithm is used to solve the model, and the parameter adjustment of the small wheel machining is obtained. Based on the theoretical tooth surface, this method provides an effective method for the engagement performance of the two sides of the cycloid rack and other teeth of the other teeth. (4) the actual tooth surface meshing performance analysis and active design of hypoid gear gear tooth surface based on measurement. Based on the discrete coordinate point of the tooth surface measured by the high precision gear measurement center, the principle and method of the actual tooth surface fitting are studied. The shape value points of the tooth surface are extracted, and the measured teeth are solved through the control vertex and the weight factor, and the measured teeth are obtained. The surface fitting surface and its parameterized representation are expressed, and the accuracy of the surface fitting is verified. The mathematical model of the actual tooth surface meshing simulation analysis is established and solved. Compared with the traditional rolling inspection, the actual tooth surface meshing simulation analysis can obtain the transmission error curve while obtaining the contact marks of the tooth surface, and the actual tooth is completely reflected. In order to avoid the problem of inconsistent evaluation datum in the simulation results of the theoretical tooth surface, the problem of inconsistent evaluation datum of the theoretical tooth surface is avoided. The active design method of the hypoid gear tooth surface of the cycloid tooth surface based on the actual tooth surface is put forward, which is based on the actual tooth surface. The deviation caused by the difference and heat treatment is only necessary to correct the meshing performance of the small wheel tooth surface. It is very beneficial to shorten the test period. (5) test and contrast analysis and verification. Taking the olerkang Spirac method for a high-speed vehicle bridge gear pair as an example, the gear cutting, tooth surface measurement, rolling test and test are carried out. Theoretical tooth surface modeling, geometric contact analysis and tooth surface active design verification are made. The results obtained from the simulation method are compared with the test results and the simulation results of the latest spiral bevel gear design analysis software KIMoS5 of klin bainge. The method of the tooth surface modeling, the geometric contact analysis method of the theoretical tooth surface and the tooth surface are verified. The active design method is effective and feasible for the actual tooth meshing simulation analysis method.
【学位授予单位】:西北工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TH132.41

【相似文献】

相关期刊论文 前10条

1 易传云,王涛,王伏林;二维数字化齿面的展成方法研究[J];中国机械工程;2003年24期

2 臧权同;;连杆大端及其齿面的合理设计[J];内燃机学报;1985年02期

3 易传云,王涛,王伏林;三维数字化齿面的展成方法研究[J];机械科学与技术;2003年06期

4 唐进元;曹康;周超;李国顺;;小轮齿面误差与调整参数误差敏感性研究[J];航空动力学报;2009年09期

5 蔡香伟;方宗德;苏进展;;基于数控切齿的弧线齿面齿轮啮合特性研究[J];航空动力学报;2012年01期

6 王伏林,易传云,杨叔子,刘洪贵;二维数字化齿面加工误差分析[J];华中科技大学学报(自然科学版);2003年11期

7 王伏林;易传云;胡仲勋;陈静;;一种二维数字化齿面加工方法研究[J];湖南大学学报(自然科学版);2007年02期

8 刘洪贵,易传云,王涛,王伏林;数字化齿面展成加工运动仿真研究[J];工具技术;2004年05期

9 汪中厚;李刚;久保爱三;;基于数字化真实齿面的螺旋锥齿轮齿面接触分析[J];机械工程学报;2014年15期

10 王伏林,易传云,王涛,杨叔子;数字化齿面加工误差评定基准研究[J];中国机械工程;2003年19期

相关博士学位论文 前9条

1 杜进辅;摆线齿准双曲面齿轮齿面啮合性能分析及设计技术研究[D];西北工业大学;2015年

2 蔡香伟;航空弧齿锥齿轮的啮合特性分析及齿面设计研究[D];西北工业大学;2015年

3 聂少武;基于完全共轭的摆线锥齿轮齿面失配设计及修正理论研究[D];西北工业大学;2015年

4 王小林;准双曲面齿轮齿面参数化和接触可视化方法研究[D];华中科技大学;2006年

5 王伏林;数字化齿面展成加工及误差补偿研究[D];华中科技大学;2005年

6 徐彦伟;弧齿锥齿轮铣齿机主动精度设计方法研究[D];天津大学;2010年

7 刘光磊;孤齿锥齿轮传动动态接触特性研究[D];西北工业大学;2000年

8 凌文锋;螺旋伞齿轮新加工方法及关键技术的研究[D];北京交通大学;2008年

9 陈思雨;圆柱齿轮传动齿面形状与非线性特性关联规律分析及实验研究[D];中南大学;2012年

相关硕士学位论文 前10条

1 权中华;推土机终传动齿轮刮削工艺关键技术研究[D];山东大学;2015年

2 明希军;准双曲面锥齿轮实体建模与齿面接触分析[D];沈阳工业大学;2016年

3 孔二方;蜗杆砂轮磨削异形螺旋曲面中的齿面扭曲补偿方法研究[D];重庆大学;2015年

4 冯楠;双粗糙齿面接触时的弹流润滑数值分析[D];太原理工大学;2016年

5 李大伟;基于齿面统一数学模型的螺旋锥齿轮数控加工研究[D];郑州大学;2009年

6 曹康;螺旋锥齿轮精确几何建模与齿面误差反调修正研究[D];中南大学;2009年

7 邢彬;螺旋锥齿轮齿面三坐标测量机测量关键技术与测量数据应用研究[D];中南大学;2010年

8 赵小波;汽车后桥弧齿锥齿轮齿面反求及动态性能分析[D];重庆理工大学;2014年

9 翟庆富;锥齿轮齿面反求与分析方法[D];重庆理工大学;2009年

10 刘高杰;小模数弧齿锥齿轮粉末冶金成形齿面的设计与模具制作[D];河南科技大学;2014年



本文编号:2095121

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/2095121.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8b1d1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com