旋转系统断轴故障在线预测及诊断方法的研究
[Abstract]:With the development of society and the progress of science and technology, more and more automatic rotating systems are applied. However, its failure reduces the application efficiency of automation equipment, especially the failure of rotating shaft will further expand the fault degree of the equipment. Rotating machinery system is the most commonly used transmission system, widely used in various fields, such as chemical industry, electricity, petroleum, aerospace and so on. Rotating machinery shaft failure will bring huge economic losses, even human casualties. Therefore, it is very important for production safety, personal safety, reducing economic loss and improving the national economy to strengthen the monitoring of the running state of rotating machinery system, especially the prediction of shaft fracture. Although there are many ways to detect shaft failures, such as offline and online. However, these methods have their own defects, which makes it difficult to judge the running state of the shaft. For our country, the research technology of shaft breaking prediction in rotating machinery is not mature. Although there are many papers on shaft breaking, it is generally limited to the quantitative theoretical analysis of shaft breaking. However, there are very few researches that can be applied to the field test of broken shaft. So far, there is a lack of a practical, simple and effective on-line prediction system to deal with the fracture of rotating shaft. This paper aims at the deficiency of the existing on-line testing methods of broken shaft, based on the fact that the mechanical shaft is an elastic body, and the strain produced in the process of torque transfer is related to the torsional stiffness. In this paper, a new on-line prediction method for shaft failure of rotating machinery is presented, and the preliminary research and test of the whole system are completed. This paper first introduces the fault situation of rotating machinery and the harm of broken shaft fault, analyzes and compares the existing methods and shortcomings of shaft broken fault detection, and synthesizes the demand and development of broken shaft fault prediction. Secondly, the changes of stiffness and dynamics in the running state of the shaft are analyzed from the angle of axial stress mechanism, and the feasibility of the new on-line prediction method is expounded, and the principle of the new on-line prediction system for broken shaft is analyzed. The structure of the whole prediction system is designed, and then the whole on-line system is developed. Finally, the real time detection of the broken shaft fault of the actual system is carried out, which proves the effectiveness of the method proposed in this paper.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH17
【参考文献】
相关期刊论文 前10条
1 吴德会;刘志天;王晓红;苏令锌;;利用复合激励的无盲点管道裂纹漏磁检测新方法[J];仪器仪表学报;2016年10期
2 张冬;张春元;王刚;崔永森;;一种电力测功机中测控仪的设计[J];机电技术;2015年05期
3 朱正;王春亮;;传输装置转子转轴断裂原因分析[J];理化检验(物理分册);2015年01期
4 苏建成;;汽车故障诊断专家系统技术研究[J];汽车零部件;2014年01期
5 田颖;金振华;聂圣芳;卢青春;;交流电力测功机控制系统的研究[J];汽车工程;2014年01期
6 郑何程;冯建;卢继平;;表面裂纹荧光磁粉检测分析[J];科技传播;2013年23期
7 罗跃纲;吴斌;胡红英;冯长建;;旋转机械转轴裂纹损伤故障研究进展[J];大连民族学院学报;2013年01期
8 宿希强;;追问丰田“断轴门”真相[J];中国质量万里行;2012年11期
9 任淮辉;陶刚正;张海涛;王习术;;NTK300型风电机组主轴疲劳断裂失效分析[J];工程与试验;2012年03期
10 王炳成;任朝晖;闻邦椿;;基于非线性多参数的旋转机械故障诊断方法[J];机械工程学报;2012年05期
相关博士学位论文 前1条
1 王广斌;基于流形学习的旋转机械故障诊断方法研究[D];中南大学;2010年
相关硕士学位论文 前7条
1 范爽;电涡流测功机加载控制系统的研制[D];北京理工大学;2016年
2 喻桑桑;基于VAM的微小裂纹超声检测研究[D];中国计量学院;2015年
3 沈紫乐;转子不对中故障识别技术研究[D];郑州大学;2012年
4 王辉;光电式动态扭矩测量系统的设计与实验[D];燕山大学;2010年
5 刘磊;交流电力测功机控制器的研究与开发[D];北京交通大学;2010年
6 韩敬宇;基于声发射技术的风电叶片裂纹无线监测系统研究[D];北京化工大学;2010年
7 周文;微动疲劳裂纹萌生特性及寿命预测[D];浙江工业大学;2007年
,本文编号:2163676
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2163676.html