基于表面和内部损伤的压缩机叶片疲劳性能研究
[Abstract]:High strength steel FV520B-I is used in the manufacture of core components of large mechanical equipment, such as centrifugal compressor blades. The fatigue life of compressor blade is 10-20 years, which is analyzed as ultra-high cycle fatigue. It is found that the damage is the most obvious factor affecting the fatigue performance of ultra-high cycle, including the surface roughness and internal inclusions, which are easy to cause fatigue failure. The existence of damage reduces the fatigue strength of the material or parts, which is accompanied by the comprehensive influence of the stress ratio in the actual working conditions, which ultimately leads to the reduction of fatigue life and the occurrence of irreversible fatigue failure. Although various fatigue life prediction models and fatigue strength calculation formulas have been put forward in the field of fatigue research, and more mature theories have been established, there is no research on fatigue performance of different damage forms of FV520B-I at present. At the same time, the research on fatigue properties of FV520B-I under the influence of actual working condition parameters has not been widely carried out, which can not provide an effective research basis for theoretical research and practical application. In this paper, the fatigue life and fatigue strength of FV520B-I are studied with mature theory and fatigue experiment, and the fatigue life and fatigue strength calculation model considering surface roughness and internal inclusions are established. It provides theoretical basis for fatigue analysis and remanufacture of FV520B-I and related parts in actual working conditions, and enriches the fatigue research of FV520B-I. Based on the research background of fatigue theory, this paper first understands the achievements of fatigue research at the present stage, and clarifies the significance of FV520B-I fatigue research. Secondly, the fatigue experiment of FV520B-I is carried out, and the fatigue test data, including the stress amplitude and fatigue life, are obtained, and the stress-life curve is obtained. Based on the analysis of the fracture and surface of the specimen, the inclusion size and the surface roughness are obtained, which provides the data basis for further research. The finite element model is established on the basis of the actual condition of centrifugal compressor, and the stress distribution in the presence of fatigue crack is analyzed, which lays the foundation for the subsequent establishment of fatigue strength model. In chapter 3, the factors affecting fatigue life and fatigue strength of metal materials are analyzed according to the actual working parameters of compressor blades, and the influence mechanism of each parameter on fatigue strength is clarified. According to the classical fatigue theory, the modified parameter expression of the effect of stress ratio and size change on fatigue strength is obtained. The influence coefficient of surface roughness is tested, and the roughness coefficient of different surface roughness is determined. In the fourth and fifth chapters, the surface roughness and internal non-metallic inclusions are taken as the main research objects, respectively, and the calculation models between surface roughness and internal non-metallic inclusions, fatigue strength and fatigue life are established. A supplementary experiment was carried out to prove the accuracy of the model according to the influence of surface roughness. Furthermore, the specific values of the stress ratio, hydrogen element and other influencing parameters are determined according to the actual operating condition parameters. The fatigue strength and fatigue life are calculated under the condition of internal non-metallic inclusions, and the applicability of the fatigue strength calculation model is verified.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH45
【参考文献】
相关期刊论文 前10条
1 李占明;朱有利;黄元林;刘开亮;谢俊峰;;喷丸强化后30CrMnSiNi2A钢表面完整性对其抗疲劳性能的影响[J];中国表面工程;2012年05期
2 樊俊铃;郭杏林;吴承伟;邓德伟;;FV520B钢十字焊接接头的疲劳性能[J];材料热处理学报;2012年07期
3 关振群;王鄢;杨树华;刘万青;刘亚丽;王斌;张长海;周芒;张昭;;大型离心压缩机闭式叶轮动力特性分析[J];大连理工大学学报;2012年03期
4 张小丽;陈雪峰;李兵;何正嘉;;机械重大装备寿命预测综述[J];机械工程学报;2011年11期
5 章刚;刘军;刘永寿;岳珠峰;;表面粗糙度对表面应力集中系数和疲劳寿命影响分析[J];机械强度;2010年01期
6 胡燕慧;张峥;钟群鹏;韩邦成;;金属材料超高周疲劳研究进展[J];机械强度;2009年06期
7 朱顺鹏;黄洪钟;谢里阳;;考虑小载荷强化的模糊疲劳寿命预测理论[J];航空学报;2009年06期
8 刘浩;赵军;丁桦;;快速确定45钢疲劳极限的试验方法[J];物理测试;2008年02期
9 张亚军;;S-N疲劳曲线的数学表达式处理方法探讨[J];理化检验(物理分册);2007年11期
10 刘浩;曾伟;丁桦;赵军;;利用红外热像技术快速确定材料疲劳极限[J];力学与实践;2007年04期
相关博士学位论文 前3条
1 衣振华;疲劳裂纹扩展研究及在装载机横梁寿命估算中的应用[D];山东大学;2011年
2 王新刚;机械零部件时变可靠性稳健优化设计若干问题的研究[D];东北大学 ;2009年
3 雷冬;疲劳寿命预测若干方法的研究[D];中国科学技术大学;2006年
相关硕士学位论文 前10条
1 王金龙;离心压缩机叶片材料FV520B-I的超高周疲劳寿命研究[D];大连理工大学;2015年
2 钟全飞;概率疲劳寿命预测方法及可靠性分析[D];电子科技大学;2013年
3 韩宇;大型风力机叶片疲劳寿命分析[D];华北电力大学(北京);2011年
4 麻栋兰;大型离心压缩机叶轮可靠性研究[D];大连理工大学;2009年
5 刘万青;大型离心压缩机焊接叶轮疲劳分析[D];大连理工大学;2008年
6 唐文秋;应力集中、尺寸和表面对金属疲劳强度影响的研究[D];东北大学;2008年
7 蒋小燕;40CrNiMoA钢超声疲劳研究[D];江苏大学;2008年
8 赵丰;离心压缩机防喘振控制系统研究[D];大连理工大学;2006年
9 么立新;小流量模型级内部流动数值实验与实验研究[D];大连理工大学;2006年
10 梁锋;夹杂物对超高强度钢微观破坏机制的研究[D];清华大学;2006年
,本文编号:2164052
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2164052.html