基于信息融合与VPMCD的滚动轴承智能诊断研究
[Abstract]:As a key supporting part in mechanical system, rolling bearing has a direct impact on the safe operation of the whole equipment. Therefore, the development of rolling bearing fault diagnosis is of practical significance. In order to ensure the completeness and reliability of the state information collection, multiple sensors are usually arranged on the measuring points in order to ensure the completeness and reliability of the rolling bearing operation state monitoring. Most of the collected multi-channel signals are nonlinear and non-stationary. However, the traditional time-frequency method is difficult to realize the simultaneous joint analysis of multi-channel signals, and multi-dimensional empirical mode decomposition can effectively solve this problem and ensure that the IMF components of the decomposed multi-channel signals are aligned according to the frequency scale. This provides favorable conditions for multi-channel information fusion. In this paper, it is combined with multivariate multi-scale entropy and full-vector spectrum technology to extract fault feature of rolling bearing, and the feature extracted based on information fusion technology is identified by variable prediction model recognition method (VPMCD). The main work of this paper is as follows: 1. A method of extracting degenerate features based on multi-dimensional empirical mode decomposition (MEMD) and multivariate multi-scale entropy (MMSE) is proposed. Firstly, the multi-channel signals in different degraded states of rolling bearings are decomposed synchronously and adaptively using MEMD algorithm, and then the multi-element and multi-scale entropy analysis of the signals reconstructed by multi-scale IMF components is carried out. Finally, through the analysis of examples, it is proved that the method can effectively reflect the degradation trend of rolling bearing. 2. A new fault diagnosis method of rolling bearing based on noise assisted multidimensional empirical mode decomposition (NA-MEMD) and full vector spectrum is proposed, which is called full-vector NA-MEMD.. Firstly, NA-MEMD is used to decompose the multi-channel information composed of the homologous two-channel signal and the noise auxiliary signal into a series of IMF components, and then, according to the correlation coefficient, the IMF component containing the main fault information is selected from the homologous dual-channel to reconstruct. Finally, the reconstructed signal is fused with the full vector information to extract the fault features. Simulation signals and experimental signals are used to verify the effectiveness of the method. 3. The features extracted by the two fault feature extraction methods based on information fusion are classified by variable prediction model (VPMCD). Firstly, the multi-scale entropy extracted from MEMD and MMSE is used as the eigenvalue to construct the feature vector, and the bearing degradation degree is recognized by input VPMCD. Then the amplitudes of all kinds of fault feature frequencies in the full-vector NA-MEMD envelope spectrum are extracted as the eigenvalues to construct the eigenvector, and the feature vectors are input into the VPMCD classifier to realize the classification of fault types. Finally, the qualitative and quantitative intelligent diagnosis of rolling bearing is realized by two methods.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.33
【相似文献】
相关期刊论文 前10条
1 ;首届全国信息融合学术年会征文通知[J];舰船电子工程;2009年09期
2 ;首届全国信息融合学术年会召开[J];航空学报;2009年12期
3 ;首届全国信息融合学术年会征文通知[J];海军航空工程学院学报;2009年04期
4 ;第二届全国信息融合学术年会征文通知[J];舰船电子工程;2010年01期
5 ;首届全国信息融合学术年会[J];舰船电子工程;2010年01期
6 ;第三届中国信息融合大会征文通知[J];航空学报;2011年01期
7 ;第四届中国信息融合大会征文通知[J];舰船电子工程;2011年08期
8 ;第4届中国信息融合大会征文通知[J];航空学报;2011年12期
9 ;第四届中国信息融合大会征文通知[J];舰船电子工程;2011年12期
10 ;第四届中国信息融合大会征文通知[J];舰船电子工程;2012年02期
相关博士学位论文 前7条
1 胡洲;信息融合欠驱动控制技术研究[D];南京航空航天大学;2014年
2 张云璐;基于用户信息融合的个性化推荐[D];武汉大学;2012年
3 王恩雁;基于本体的多源异构应急信息融合方法研究[D];哈尔滨工业大学;2014年
4 文妍;基于多源信息融合的数控机床进给系统机械故障诊断研究[D];青岛理工大学;2016年
5 吴荣春;军事信息系统中信息融合关键技术研究[D];电子科技大学;2016年
6 王健;产品追踪过程中失效UID恢复与补救技术研究[D];西北工业大学;2016年
7 朱林;信息融合系统工程设计准则的研究[D];哈尔滨工程大学;2005年
相关硕士学位论文 前10条
1 金兵;基于信息融合与VPMCD的滚动轴承智能诊断研究[D];郑州大学;2017年
2 马艳丽;基于全矢MEMD的滚动轴承状态退化研究[D];郑州大学;2017年
3 庄颖;信息融合的粗糙集方法研究[D];昆明理工大学;2015年
4 李晓;基于信息融合的高速列车转向架故障诊断[D];西南交通大学;2015年
5 陈昭;基于云计算的中药信息融合知识服务平台构建[D];福建中医药大学;2015年
6 陈亭亭;雷达与AIS信息融合技术的研究[D];大连海事大学;2015年
7 万守鹏;基于信息融合的舱音信号分析与安全诊断[D];上海应用技术学院;2015年
8 张宁波;基于信息融合的电子产品故障诊断[D];中北大学;2015年
9 刘萌萌;基于信息融合的改进极限学习机预测算法研究[D];辽宁大学;2015年
10 田静;基于声波特征的管道泄漏信息融合故障诊断方法研究[D];河北科技大学;2015年
,本文编号:2275192
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2275192.html