大型磨机故障诊断方法的研究
[Abstract]:Mill machinery is one of the most widely used equipments in industry. Because of its complexity of structure and bad working conditions, the fault diagnosis of mill is more difficult than that of conventional equipment. With the continuous development of vibration testing and signal analysis and other related technologies, vibration signal detection, The technology of fault diagnosis based on processing and analysis has become an important research direction in the field of fault diagnosis. EMD method is a new kind of signal processing method. And has been widely used in the field of fault diagnosis. In this paper, based on EMD method, several time-frequency analysis methods are studied, and these methods are applied to the actual mill fault diagnosis, the fault is identified accurately, and good results are obtained. Firstly, the theory of EMD method is introduced in detail, including the concepts of instantaneous frequency and eigenmode function in EMD theory, and the process of EMD decomposition is described in detail. Then, the endpoint effect problem and false component problem existing in EMD are improved. And the signal simulation is done. Secondly, based on the EMD method, the energy operator demodulation method, the frequency-divided weighted time-frequency entropy method and the local Hilbert spectrum analysis method are studied. Compared with the traditional Hilbert demodulation method, the superiority of this method is verified. The local Hilbert spectrum analysis method, including the Hilbert time-frequency spectrum and the Hilbert marginal spectrum, is an improvement on the original time-frequency entropy method, and the local Hilbert spectral analysis method includes the Hilbert time-frequency spectrum and the Hilbert marginal spectrum. For the above three methods, the effectiveness of these methods in signal analysis is verified by using the simulation signal and the simulation experiment, respectively. Finally, the three methods based on EMD method are used to diagnose the malfunction of the mill, including the gear in the reducer, the bearing, and the roller parts of the mill. The results show that the energy operator demodulation method based on EMD method, frequency band weighted time-frequency entropy method and local Hilbert spectrum analysis method have good results in the fault diagnosis of various parts of mill.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TH165.3
【相似文献】
相关期刊论文 前10条
1 张立众;孙志勇;;“逐项排除法”在故障诊断中的应用[J];矿山机械;1990年09期
2 贾民平;机械故障诊断学的理论及其应用 第一讲 故障诊断的意义及研究发展概况[J];江苏机械制造与自动化;1999年01期
3 杨晓磊;;浅谈我国铁路机车故障诊断[J];科技风;2014年06期
4 田少民;工程机械的状态监测与故障诊断技术[J];工程机械;2001年01期
5 王敏,王万俊,熊春山,黄心汉;基于多传感器数据融合的故障诊断技术[J];华中科技大学学报;2001年02期
6 潘松海;介绍一种故障诊断方法[J];组合机床与自动化加工技术;2001年06期
7 李德跃;发动机突然熄火的故障诊断[J];城市车辆;2001年02期
8 王小虎;机械式风速表检定中的故障诊断及维修方法[J];中国计量;2002年03期
9 王清照,肖卫杰,王加璇;运用热经济学结构理论进行故障诊断的探讨[J];中国电机工程学报;2003年09期
10 陈东林;烟草设备的故障诊断技术应用与展望[J];中国设备工程;2003年06期
相关会议论文 前10条
1 杨其校;刘昭度;齐志权;马岳峰;;汽车ABS电机故障诊断[A];第三届全国信息获取与处理学术会议论文集[C];2005年
2 黎清海;高庆;;基于系统分层的故障诊断方法[A];第三届全国信息获取与处理学术会议论文集[C];2005年
3 闻竞竞;黄道;;故障诊断方法综述[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
4 李t,
本文编号:2365509
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2365509.html