当前位置:主页 > 科技论文 > 机电工程论文 >

应用电磁直线执行器实现电子凸轮的研究

发布时间:2019-04-16 00:21
【摘要】:随着产品的多样化以及控制精度、响应速度等要求的不断提高,同时机械凸轮机构存在制造困难、磨损大、精度低且缺乏柔性等问题,利用控制系统实现传统机械凸轮机构运动功能的电子凸轮将会得到重视与发展。本文研究的电子凸轮是基于自行研制的电磁直线执行器,通过对给定理想轨迹进行跟踪,从而实现从动件所需的运动规律,以取代传统的机械凸轮。论文的主要工作内容包括以下几个方面:(1)电子凸轮往复直线运动规律曲线的设计与研究。将传统机械凸轮机构中运动曲线以"位移-转角"形式推导转换为"位移-时间",根据无量纲化的定义,设计运动规律曲线的无量纲化表达式,从而为电子凸轮后面的轨迹跟踪提供前提保障。(2)电子凸轮机构数学模型的建立以及实验系统的设计。首先通过对电子凸轮机构进行动力学分析,同时将其拆分为电路、磁路以及机械三个子系统分别进行数学建模研究,然后建立电子凸轮的数学模型和系统仿真模型,最后对电子凸轮控制系统进行设计,构建相应的实验平台。(3)研究迭代学习控制算法并将其应用于电子凸轮控制系统。利用迭代学习控制算法中对重复轨迹跟踪精度高、稳定性好的特点,将其应用于电子凸轮控制器中,并进行仿真与实验验证,结果表明其实际跟踪效果较差,鲁棒性能有待进一步提高。(4)提出模糊滑模迭代控制算法并将其应用于电子凸轮控制系统。针对迭代控制器所存在的鲁棒性差问题,研究迭代控制与其他先进控制技术相结合的智能算法。提出了一种在迭代控制基础上叠加滑模变结构控制与模糊控制的算法,从而有效改善迭代控制中鲁棒性差的缺陷以及滑模变结构中出现的抖振现象。通过仿真与实验表明,模糊滑模迭代控制具有跟踪精度高、响应速度快、收敛速度快、鲁棒性能强的优势。(5)通过实际实验验证表明,基于自行研制的电磁直线执行器,应用模糊滑模迭代控制算法的电子凸轮能够对周期仅为5ms,行程为±3mm的正弦轨迹进行精准跟踪,其跟踪精度可达到总行程的1%以内,从而验证电子凸轮具有取代传统机械凸轮的可行性。
[Abstract]:With the diversification of products and the continuous improvement of control precision and response speed, the mechanical cam mechanism has some problems such as difficult manufacturing, large wear and tear, low precision and lack of flexibility, and so on. The electronic cam which realizes the movement function of the traditional mechanical cam mechanism by using the control system will be paid more attention and developed. The electronic cam studied in this paper is based on the self-developed electromagnetic linear actuator. By tracking a given ideal track, the motion rule of the follower can be realized, so as to replace the traditional mechanical cam. The main contents of this paper include the following aspects: (1) the design and research of the reciprocating linear motion curve of electronic cam. The motion curve of the traditional mechanical cam mechanism is deduced and transformed into "displacement-time" in the form of "displacement-rotation angle". According to the dimensionless definition, the dimensionless expression of the curve of motion law is designed. (2) the establishment of the mathematical model of the electronic cam mechanism and the design of the experimental system. Firstly, the dynamic analysis of the electronic cam mechanism is carried out. At the same time, the electronic cam mechanism is divided into three subsystems: circuit, magnetic circuit and machinery. Then, the mathematical model and the system simulation model of the electronic cam are established. Finally, the electronic cam control system is designed and the corresponding experimental platform is constructed. (3) the iterative learning control algorithm is studied and applied to the electronic cam control system. The iterative learning control algorithm is applied to the electronic cam controller because of its high tracking accuracy and good stability. The simulation and experimental results show that the tracking effect of the iterative learning control algorithm is worse than that of the electronic cam controller, and the results show that the iterative learning control algorithm has the advantages of high tracking accuracy and good stability. The robust performance needs to be further improved. (4) Fuzzy sliding mode iterative control algorithm is proposed and applied to electronic cam control system. In order to solve the problem of poor robustness of iterative controller, an intelligent algorithm combining iterative control with other advanced control techniques is studied. In this paper, an iterative control algorithm based on sliding mode variable structure control and fuzzy control is proposed, which effectively improves the defect of poor robustness in iterative control and buffeting phenomenon in sliding mode variable structure. The simulation and experiment show that the fuzzy sliding mode iterative control has the advantages of high tracking precision, fast response speed, fast convergence speed and strong robust performance. (5) the experimental results show that based on the self-developed electromagnetic linear actuator, the fuzzy sliding mode iterative control has the advantages of high tracking accuracy, fast response speed, fast convergence speed and strong robust performance. The electronic cam with fuzzy sliding mode iterative control algorithm can accurately track the sinusoidal trajectory with a period of only 5 Ms and a stroke of 卤3mm, and the tracking accuracy can be less than 1% of the total stroke. Thus the feasibility of replacing the traditional mechanical cam with electronic cam is verified.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH132.47

【相似文献】

相关期刊论文 前10条

1 董伟良;凸轮的变异研究和电子凸轮发展[J];上海应用技术学院学报(自然科学版);2004年03期

2 陈忠维;;基于Solid Works/COSMOS Motion的凸轮轮廓线设计[J];机械;2008年04期

3 刘兴富;邹常荣;;确定凸轮桃尖位置方法的探讨[J];计量技术;1979年01期

4 李浙昆,樊瑜瑾,杨晓京;凸轮CAD/CAE/CAM系统的设计[J];工程机械;1999年06期

5 张远志,李建华;凸轮轮廓尺寸的精确计算及先进加工工艺[J];武汉交通科技大学学报;2000年01期

6 刘兴富;凸轮靠模轮廓曲线的设计制造与检测[J];江苏机械制造与自动化;2000年05期

7 刘兴富;凸轮检测任选基准选择方法之探讨[J];航空精密制造技术;2001年05期

8 刘兴富;浅论凸轮测量任选基准的选择方法[J];计量技术;2003年12期

9 郭丽环,刘刚;凸轮系统动力系统计算的探讨[J];组合机床与自动化加工技术;2004年03期

10 金国伟 ,李郝林;凸轮轮廓的反求设计方法[J];精密制造与自动化;2005年03期

相关会议论文 前10条

1 张阁;邹慧君;姚燕安;郭为忠;;电子凸轮的概念与设计[A];第十二届全国机构学学术研讨会论文集[C];2000年

2 李存华;薛卫;;空间凸轮轮廓的测量程序设计及应用[A];中国烟草学会2006年学术年会论文集[C];2007年

3 王喜仓;于利民;;盘型凸轮的一体化设计[A];中国图学新进展2007——第一届中国图学大会暨第十届华东六省一市工程图学学术年会论文集[C];2007年

4 钟山;黄美发;钟艳如;匡兵;许敏;;用广义延拓逼近法优化设计凸轮轮廓[A];中国电子学会电子机械工程分会2007年机械电子学学术会议论文集[C];2007年

5 常宗瑜;;指数积方法在空间分度凸轮廓形设计中的应用[A];第十三届全国机构学学术研讨会论文集[C];2002年

6 高丽萍;李郝林;;凸轮当量升程误差的测量方法[A];第二届全国信息获取与处理学术会议论文集[C];2004年

7 姚燕安;颜鸿森;邹慧君;张策;;变转速伺服凸轮系统的研究[A];第十二届全国机构学学术研讨会论文集[C];2000年

8 余顺;陈庭;李志明;;凸轮数控磨削加工的通用数学模型研究[A];2005年十二省区市机械工程学会学术年会论文集(湖北专集)[C];2005年

9 张阁;邹慧君;郭为忠;李瑞琴;刘建慧;;基于Internet的凸轮CAD/CAM设计[A];第十三届全国机构学学术研讨会论文集[C];2002年

10 房瑞明;张晓玲;沈韶华;;高速凸轮反求设计的B3样条方法[A];全国印刷、包装机械凸轮、连杆机构学术研讨会(第6届全国凸轮机构学术年会)论文集[C];2005年

相关博士学位论文 前2条

1 张鹏;组合式凸轮轴径向滚花装配工艺优化及粉末凸轮装配失效分析[D];吉林大学;2015年

2 付振山;滚珠型弧面分度凸轮机构的啮合特性研究[D];山东大学;2011年

相关硕士学位论文 前10条

1 李雅昔;CG1107型自动车床主刀架驱动凸轮数字化设计与仿真分析[D];西北农林科技大学;2015年

2 冷东;基于数字模型的凸轮连杆系统设计研究[D];西南交通大学;2015年

3 王晓月;圆柱分度凸轮机构的参数化设计系统[D];华北理工大学;2015年

4 黄江平;基于自动打包机的凸轮系统综合研究[D];华南理工大学;2015年

5 穆晓伟;圆柱分度凸轮凸脊单侧加工刀路位姿的研究[D];太原科技大学;2015年

6 金辉;凸轮磨削的速度优化算法研究[D];吉林大学;2016年

7 李聪;凸轮磨床从动轴跟随主导轴的跟踪算法研究[D];吉林大学;2016年

8 周正珠;空间曲面凸轮副摩擦磨损过程研究及其磨损预测[D];上海工程技术大学;2016年

9 王华敏;基于图像处理技术的凸轮盘轮廓检测方法研究[D];郑州大学;2016年

10 彭景阳;双电子凸轮驱动七杆机构研究[D];湖南大学;2016年



本文编号:2458626

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/2458626.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1cca9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com