基于ADAMS的角接触球轴承的动力学分析与结构优化
[Abstract]:Angular contact ball bearings are widely used in various high speed rotating shafting because of their good high speed performance and bearing capacity. One of the main failure reasons of high speed angular contact ball bearing is the instability of bearing operation, so the design of cage is very important. The research and practice show that the failure of high speed shaft system caused by the instability of cage accounts for a large proportion of the failure of high speed angular contact ball bearing during operation. Therefore, it is of great theoretical and practical significance to study the dynamic characteristics of high speed angular contact ball bearings and the stability of cages, and to optimize the structure of bearings and improve the stability of bearings. Based on the dynamic analysis theory of rolling bearing, combined with the related theories of bearing contact, elastohydrodynamic lubrication, friction and so on, the relationship between the components of angular contact ball bearing is systematically and comprehensively analyzed in this paper. The dynamic differential equation of angular contact ball bearing is established. The dynamics module of angular contact ball bearing is developed by using ADAMS software. The custom subroutine between bearing components is written in Fortran language, and the compiled dynamic link library file (* .dll) is linked to ADAMS/Solver. The dynamic simulation of high speed angular contact ball bearing is realized. Taking an angular contact ball bearing as an example, the influence of bearing structure parameters and typical working conditions on the dynamic characteristics of the bearing is analyzed when the cage is square hole and circular hole, respectively. The results show that: 1. Increasing the axial load or increasing the rotating speed is beneficial to the stability of the cage, but it will increase the average friction torque between the cage and the guide surface of the jacket ring. When the axial load is small, the stability of the round pocket hole cage is better than that of the square pocket hole, but when the axial load is large, the stability of the square pocket hole cage is slightly better than that of the round pocket hole. When the rotating speed is small, the stability of the square hole cage is slightly better than that of the round pocket hole, but when the rotating speed is large, the stability of the two cages is basically the same. 2. The increase of radial load will lead to the decrease of the stability of the cage, but can reduce the average friction torque between the cage and the guide surface of the outer ring: the stability of the round hole cage is slightly better than that of the square hole cage. 3. With the increase of clearance ratio, the instability of square hole and round hole cage increases. When the clearance ratio c is less than 1, the instability of the two shape cages is basically the same, while when the clearance ratio c is greater than 1, the stability of the square hole cage is worse than that of the round pocket hole. The average lubrication friction torque between the square hole cage and the guide surface of the outer ring is on the rise, while the average collision friction moment is the opposite. 4. With the increase of groove curvature, the instability of square hole and circular hole cage decreases at first and then increases. In this paper, the influence of the change of outer groove curvature on the stability of cage is greater than that of inner groove curvature. When the groove curvature is fi=0.54,fo=0.54, the instability of the two cages is the lowest. 5. Under any same working condition, the average collision friction torque between the square hole cage and the guide surface of the outer ring is smaller than that of the circular hole, while the average lubrication friction moment is the opposite. The change of average collision friction torque is obviously larger than that of lubrication friction torque.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH133.3
【相似文献】
相关期刊论文 前10条
1 徐荣瑜;角接触球轴承旋滚比的计算方法[J];轴承;1994年05期
2 孙福;新型角接触球轴承诞生[J];机床与液压;1997年01期
3 杨咸启,姜韶峰,陈俊杰,王卫国;高速角接触球轴承优化设计[J];轴承;2000年01期
4 蔡亚新;配对角接触球轴承凸出量的设计及误差分析[J];轴承;2000年03期
5 蒋兴奇,马家驹,赵联春;高速精密角接触球轴承热分析[J];轴承;2000年08期
6 侯广军;角接触球轴承预加负荷值的计算、实施与测量[J];磨床与磨削;2000年01期
7 李松生,裴翠红,王永坚;高速精密角接触球轴承支承特性分析[J];轴承;2001年02期
8 李小弟,崔红娟;一对角接触球轴承安装位置的研究[J];机械;2002年S1期
9 张锡昌,王鸿伟;角接触球轴承的特性与应用[J];轴承;2003年09期
10 肖曙红,黄晓明,张伯霖;高速角接触球轴承发热及其影响因素[J];机床与液压;2004年12期
相关会议论文 前3条
1 李香;孙茂文;;关于组配角接触球轴承组配率的研究与分析[A];十三省区市机械工程学会第五届科技论坛论文集[C];2009年
2 程超;汪久根;;基于遗传算法的双列角接触球轴承优化设计[A];第十一届全国摩擦学大会论文集[C];2013年
3 吴非;燕萍;张浩宇;赵芳;韩超;;精密配对角接触球轴承7207BTN1/P5DB关键技术研究[A];十三省区市机械工程学会第五届科技论坛论文集[C];2009年
相关硕士学位论文 前10条
1 徐立晖;高速电主轴角接触球轴承力学特性研究[D];浙江大学;2015年
2 陈思佳;角接触球轴承安装预紧对转子动力学性能影响[D];华东理工大学;2015年
3 梁群;角接触球轴承的热特性分析[D];青岛理工大学;2015年
4 唐建;高速精密角接触球轴承油气两相流动润滑分析[D];吉林大学;2016年
5 李琦;基于ADAMS的角接触球轴承的动力学分析与结构优化[D];广东工业大学;2016年
6 黄丛领;电主轴角接触球轴承摩擦学和动力学耦合特性分析[D];兰州理工大学;2013年
7 程超;角接触球轴承的摩擦学优化设计[D];浙江大学;2014年
8 高磊;混合陶瓷角接触球轴承有限元仿真分析[D];天津大学;2007年
9 王伟利;混合陶瓷角接触球轴承的热机耦合分析[D];天津大学;2007年
10 张海涛;混合陶瓷角接触球轴承的有限元分析及其仿真初探[D];天津大学;2006年
,本文编号:2483732
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2483732.html