基于局部均值分解的旋转机械故障诊断技术研究
[Abstract]:Rotating machinery accounts for a large proportion of modern machinery and equipment, so it has become an important research topic to carry out condition monitoring and fault diagnosis for it. In fault diagnosis, the key problem is to extract fault feature information and fault type identification. Local mean decomposition (Local Mean Decomposition,LMD) time-frequency analysis method has many advantages in the analysis of mechanical vibration signals, and is widely used in fault feature extraction of rotating machinery. However, there are still some shortcomings in local mean decomposition that need to be improved. In this paper, the shortcomings and improvement of LMD time-frequency analysis method are studied, and the pattern recognition method of fault type and the development and application of fault diagnosis system are studied. Firstly, aiming at the problem of endpoint effect in LMD, the causes are analyzed, and an improved method, the maximum similarity coefficient method, is proposed to verify the effectiveness of the method through the comparative analysis of simulation and experimental research. Secondly, in order to solve the problem that it is difficult to extract weak high frequency signals in rotating machinery fault feature extraction, and the false frequency problem of LMD decomposition results, a differential local mean decomposition (Differential Local Mean Decomposition, is proposed. DLMD) fault diagnosis method. The feasibility and effectiveness of the method are verified by simulation. Through the research and analysis of the compound fault signal in practical engineering, the feasibility of this method in practical application is verified. Then, aiming at the pattern recognition of rotating machinery fault types, the LMD method is combined with sample entropy and fuzzy clustering, and a rotating machinery fault diagnosis method based on local mean decomposition, sample entropy and fuzzy clustering is proposed. In this method, the vibration signal of rotating machinery is decomposed by LMD, and the sample entropy is obtained by decomposing the product function (Product Function,PF), which is used as the eigenvector to establish the fuzzy matrix, and the fuzzy clustering analysis and pattern recognition are carried out. Realize the classification and diagnosis of faults. Finally, combined with MATLAB and Lab VIEW, the fault diagnosis platform of rotating machinery is developed, and the design of mechanical fault diagnosis interface and the processing of fault data are carried out by using the advantages of Lab VIEW graphical programming language and the powerful data processing ability of MATLAB.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TH165.3
【参考文献】
相关期刊论文 前6条
1 徐春林,江志农,肖英;基于Hilbert变换的包络分析及其在机械故障诊断中的应用[J];机电工程技术;2004年07期
2 何成兵,顾煜炯,杨昆;一种新的转子碰摩故障诊断特征的研究[J];机械强度;2003年04期
3 ;Practical implementation of Hilbert-Huang Transform algorithm[J];Acta Oceanologica Sinica;2003年01期
4 曾新红;林春熙;苏一丹;;基于LabVIEW与MATLAB的电机监测与故障诊断[J];机械工程与自动化;2014年04期
5 佟俐;潘宏侠;胡田;;基于LabVIEW的机电设备状态监测与故障诊断系统[J];仪表技术与传感器;2008年07期
6 陈铁华,陈启卷;模糊聚类分析在水电机组振动故障诊断中的应用[J];中国电机工程学报;2002年03期
相关博士学位论文 前1条
1 鞠萍华;旋转机械早期故障特征提取的时频分析方法研究[D];重庆大学;2010年
相关硕士学位论文 前7条
1 陈平;信号瞬时频率的估计方法及其应用[D];山东大学;2007年
2 谭宇硕;基于改进HHT方法的旋转机械故障诊断的研究[D];华北电力大学(河北);2007年
3 高二山;基于现代信号分析方法的滚动轴承故障诊断的研究[D];华北电力大学(北京);2009年
4 羊初发;基于EMD的时频分析与滤波研究[D];电子科技大学;2009年
5 田佳;基于模糊的设计模式挖掘与重构[D];大连理工大学;2009年
6 许哲;局部均值分解在信号处理中的应用[D];西安电子科技大学;2013年
7 李姗姗;基于LMD时频分析的旋转机械故障特征提取方法研究[D];燕山大学;2013年
,本文编号:2484844
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2484844.html