基于警度及可控度的地铁施工应急预案分级研究
本文选题:应急预案 + 可控度 ; 参考:《天津理工大学》2013年硕士论文
【摘要】:由于地铁工程自身的高风险性及其特殊性,加上近几年的大规模、快速度的发展,使得技术和管理力量难以得到充分的保证,尤其在应急管理方面存在着应急预案措施不到位、应急预案的启动速度慢、准确性差、实施效果不理想等问题。可见通过应急管理手段有效的防御或减少地铁施工灾害,通过提高应急预案的启动速度和准确性提升我国对地铁施工事故的控制能力已成为我们迫切需要解决的问题。而对地铁施工进行预警、加强应急管理及应急预案管理可以在很大程度上避免或降低由于地铁施工灾害造成的危害,是控制地铁施工灾害的有效方法之一。 通过调研发现,虽然许多地铁建设项目在事故的发生发展过程中启动了有关预案,但预案实施的控制效果并不理想。分析其原因主要是由于目前预案启动强度的确定缺乏定量化依据、预案内容宽泛以及实施预案所需资源储备数量边界模糊。因此本文将警度及可控度这两个定量化工具引入到应急预案的研究中,使其作为确定预案启动强度的依据,并根据FMEA方法的分析步骤对地铁施工过程中的常见故障模式的应急预案强度等级进行了划分,解决预案决策的优化问题。具体过程如下: 首先运用WBS-RBS将地铁施工过程进行层层分解细化,全面的识别地铁施工过程中的常见故障模式,并对每种故障模式的危险性进行分析。 其次整理总结每种故障模式现有的预案措施,并根据故障的警度、可控度的大小对每种故障模式分级制定相应的预防措施、应急抢险措施来降低故障模式的发生率和减少故障发生所带来的危害。 最后根据预案提供的施工技术方法,明确不同警度及可控度对应的预案所需要资源的种类以及资源强度的大小,列出资源需求清单,确保故障模式发生时,施工现场配备相应的资源,,保证预案的有效实施。 本文运用警度和可控度两大定量化工具对现有预案进行进一步细化,实现了预案启动强度的定量化判断,提高了预案启动反应速度以及启动级别和措施强度的准确性,明确了预案所需资源种类及强度。在地铁施工安全系统中实现“防”“控”结合,在很大程度上避免或降低由于地铁施工灾害造成的危害。
[Abstract]:Due to the high risk and its particularity of subway engineering itself, coupled with the large scale and rapid development in recent years, it is difficult for the technical and management forces to be fully guaranteed, especially in the emergency management, the emergency planning measures are not in place. The emergency plan starts slowly, the accuracy is poor, the implementation effect is not ideal and so on. It can be seen that emergency management means to effectively prevent or reduce subway construction disasters, through improving the emergency plan start-up speed and accuracy to improve our control of subway construction accidents has become an urgent problem that we need to solve. It is one of the effective methods to control the subway construction disaster by early warning, strengthening the emergency management and emergency plan management, which can avoid or reduce the harm caused by the subway construction disaster to a great extent. Through investigation, it is found that although many subway construction projects started the related plans in the process of accident occurrence and development, the control effect of the plan implementation is not ideal. The main reasons are the lack of quantitative basis to determine the starting strength of the plan, the broad content of the plan and the vague boundary of the resource reserve required to implement the plan. Therefore, this paper introduces two quantitative tools, alarm and controllability, into the study of emergency plan, which can be used as the basis for determining the starting strength of the plan. According to the analysis steps of FMEA method, the intensity grade of emergency plan of common fault mode in subway construction process is divided, and the optimization problem of plan decision is solved. The concrete process is as follows: firstly, WBS-RBS is used to decompose and refine the subway construction process, identify the common fault modes in the subway construction process, and analyze the danger of each kind of fault mode. Secondly, the existing preventive measures for each fault mode are summarized, and corresponding preventive measures are made according to the alarm degree and controllable degree of each fault mode. Emergency rescue measures to reduce the incidence of failure mode and reduce the damage caused by failure. Finally, according to the construction technology and method provided by the plan, the types of resources needed and the magnitude of the resource intensity of the plan corresponding to different alarm and controllability are determined, and the list of resource requirements is given to ensure that the failure mode occurs. The construction site is equipped with the corresponding resources to ensure the effective implementation of the plan. In this paper, two quantitative tools, alarm and controllability, are used to further refine the existing plan, to realize the quantitative judgement of the starting strength of the plan, and to improve the speed of the starting reaction, the accuracy of the starting level and the intensity of the measure. The type and intensity of resources required for the plan are defined. The combination of "prevention" and "control" in subway construction safety system can avoid or reduce the harm caused by subway construction disaster to a great extent.
【学位授予单位】:天津理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U231.3;X947
【参考文献】
相关期刊论文 前10条
1 武晓军;;FMEA在企业现场安全管理运用的探讨[J];安防科技;2011年07期
2 钱勇生;广晓平;郑雍;;地铁应急救援预案的研究[J];地下空间与工程学报;2006年02期
3 王晶;王鹏飞;谭跃虎;;地铁隧道工程施工过程中风险管理研究[J];地下空间与工程学报;2009年02期
4 侯艳娟;张顶立;李鹏飞;;北京地铁施工安全事故分析及防治对策[J];北京交通大学学报;2009年03期
5 王威;王磊;马东辉;苏经宇;;不同保护措施下地下管线受邻近基坑开挖影响的三维有限元分析[J];北京工业大学学报;2009年07期
6 李铭;吴启红;;深基坑失稳的加固支护实例分析[J];成都大学学报(自然科学版);2012年02期
7 米红,杨帆,曾东海;GIS技术和数学模型在城市应急系统中的应用[J];测绘科学;2005年01期
8 林舟;吴智官;;福州某桩基工程基坑突涌事故分析[J];平顶山工学院学报;2006年03期
9 卢文刚;;城市地铁突发公共事件应急管理研究——基于复杂系统理论的视角[J];城市发展研究;2011年04期
10 卢文刚;彭静;;广州城市地铁突发公共事件应急能力评价指标体系研究[J];城市发展研究;2012年04期
相关硕士学位论文 前9条
1 韩嘉;城市地铁应急预案研究[D];中南大学;2010年
2 杨保兰;基于可拓集合理论的地铁施工灾害警情可控度研究[D];天津理工大学;2011年
3 李金玲;基于关联规则的地铁基坑工程施工风险监测研究[D];天津理工大学;2011年
4 曾小旭;天津地铁网络化运营应急预案管理系统研发[D];天津大学;2012年
5 阮松;地铁车站浅埋暗挖法施工引起沉降的控制措施研究[D];北京交通大学;2008年
6 王兴华;基于可拓理论的地铁施工灾害预警模型研究[D];天津理工大学;2008年
7 赵玉梅;城市地铁施工引起地层位移对邻近建筑物的风险研究[D];中南大学;2009年
8 龙昭琴;地铁施工实时动态监控看板设计研究[D];天津理工大学;2012年
9 张璐;基于本体的城市轨道应急预案数字化方法及应用[D];北京交通大学;2012年
本文编号:2019463
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2019463.html