开拓前煤与瓦斯突出危险性区域预测技术研究
[Abstract]:Coal and gas outburst is one of the most serious natural disasters threatening coal mine safety. At present, the regional prediction of coal and gas outburst in China is mainly focused on the underground roadway after development, the point prediction based on the measured gas parameters, and the difficult problem of prediction of coal and gas outburst danger encountered in the field engineering practice before the development of coal and gas outburst. There has been no practical solution. Support vector machine (SVM), as a pattern recognition method which can solve many practical problems such as small sample, nonlinear and high dimension, has been widely used in many production fields. In order to improve the accuracy of coal and gas outburst prediction, this paper introduces support vector machine to establish a learning model to predict the outburst danger before the development of coal mine. Coal seam No. 9 in a certain mine of Lv Liang, Shanxi Province, has not been exposed, and there is no condition of underground gas parameter measurement. The law of gas occurrence in coal mine is studied, and the gas parameters measured in geological prospecting period of mine are collected and analyzed. The gas content in coal mine adjacent to the same geological unit is measured by the method of coal cuttings desorption by borehole, and the gas content in geological prospecting is corrected. According to the relationship between gas content and gas pressure, the indirect method is used to calculate the gas pressure in coal seam. There is a complex nonlinear relationship between coal and gas outburst and its various factors. This paper analyzes the feasibility of predicting coal and gas outburst by support vector machine. The particle swarm optimization (PSO),) algorithm is introduced to optimize the parameters of support vector machine (SVM), and the PSO-SVM prediction model of coal and gas outburst is established. The outburst samples of adjacent mines belonging to the same geological unit were collected as training samples, and the revised geological prospecting data of a certain mine of Lv Liang were used as test samples. The PSO-SVM algorithm program of coal and gas outburst prediction is compiled by MATLAB to predict coal and gas outburst in coal seam No. 9, which is consistent with the prediction results of single index method and synthetic index D and K method. The application of support vector machine based on particle swarm optimization is feasible in predicting the danger of coal and gas outburst before exploitation, which provides a direction for the prediction of coal and gas outburst before mine development.
【学位授予单位】:华北科技学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD713.2
【参考文献】
相关期刊论文 前10条
1 谢宏;王凯;梁家辉;田进;;金家庄煤矿下组煤瓦斯赋存规律及其影响因素研究[J];煤炭技术;2017年05期
2 王刚;武猛猛;程卫民;陈金华;杜文州;;煤与瓦斯突出能量条件及突出强度影响因素分析[J];岩土力学;2015年10期
3 牟全斌;;我国煤与瓦斯突出区域预测方法研究现状及展望[J];煤炭科学技术;2014年11期
4 唐巨鹏;杨森林;王亚林;吕家庆;;地应力和瓦斯压力作用下深部煤与瓦斯突出试验[J];岩土力学;2014年10期
5 李绍泉;刘羿甫;王丰;聂国洪;李青松;;煤与瓦斯突出鉴定相关问题探讨[J];煤炭科技;2013年03期
6 姜永东;郑权;刘浩;宋晓;;煤与瓦斯突出过程的能量分析[J];重庆大学学报;2013年07期
7 谢和平;周宏伟;薛东杰;王宏伟;张茹;高峰;;煤炭深部开采与极限开采深度的研究与思考[J];煤炭学报;2012年04期
8 胡新成;杨胜强;蒋承林;周秀红;鹿存荣;;煤与瓦斯突出危险程度指标层次分析模型的建立及应用[J];煤炭工程;2011年04期
9 舒龙勇;程远平;王亮;蒋静宇;翟清伟;孔胜利;;地质因素对煤层瓦斯赋存影响的研究[J];中国安全科学学报;2011年02期
10 施式亮;伍爱友;;基于神经网络与遗传算法耦合的煤与瓦斯突出区域预测研究[J];中国工程科学;2009年09期
相关博士学位论文 前6条
1 郭品坤;煤与瓦斯突出层裂发展机制研究[D];中国矿业大学;2014年
2 李尧斌;瓦斯含量法预测煤与瓦斯突出试验研究[D];安徽理工大学;2013年
3 陈鹏;煤与瓦斯突出区域危险性的直流电法响应及应用研究[D];中国矿业大学;2013年
4 杨恒;鹤壁八矿煤与瓦斯突出危险性预测研究[D];辽宁工程技术大学;2010年
5 高雷阜;煤与瓦斯突出的混沌动力系统演化规律研究[D];辽宁工程技术大学;2006年
6 李胜;煤与瓦斯突出区域预测的模式识别方法研究[D];辽宁工程技术大学;2004年
相关硕士学位论文 前4条
1 李浩威;姚家山5号煤层瓦斯赋存规律及层次分析法在瓦斯灾害预测中的应用[D];中国矿业大学;2015年
2 王晓磊;三家子矿煤层瓦斯赋存及涌出规律研究[D];辽宁工程技术大学;2009年
3 朱莉;基于SVM的煤与瓦斯突出预测模型研究[D];西安科技大学;2009年
4 徐学锋;地质构造对煤与瓦斯突出的影响研究[D];辽宁工程技术大学;2004年
,本文编号:2288819
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2288819.html