超磁致伸缩执行器的磁滞非线性数学模型与应用特性研究
发布时间:2018-04-17 11:32
本文选题:超磁致伸缩执行器 + 磁滞非线性 ; 参考:《南京航空航天大学》2015年硕士论文
【摘要】:随着新型功能材料的发展,出现了具有输出力大、能量密度高、分辨精度高及响应速度快等优点的新型执行器,如基于超磁致伸缩材料(Giant Magnetostrictive Material,GMM)的执行器。然而就现阶段而言,由于GMM内部复杂的本征非线性与磁滞特性,使得GMM及以GMM为核心材料的执行器在实际应用中存在输出位移或力滞回性强、非线性严重、定位精度不高等一些关键技术难题亟需解决。本文以超磁致伸缩执行器(Giant Magnetostrictive Actuator,GMA)在电液伺服领域的应用为背景,着重对GMA的磁滞非线性建模及其控制技术展开研究。本文的主要研究工作可分为以下六部分:第一章提出了课题研究背景和意义,总结了GMA磁滞模型及模型参数辨识的现状及发展,介绍了GMA控制技术的国内外研究现状并简要概括了课题的研究内容和全文的组织结构;第二章介绍了GMM的应用特性及其执行器的结构和工作原理,并针对GMA的试验结果,分析了其在不同的激励电流、预应力、磁感应强度下执行器输出位移滞回曲线的变化情况。第三章建立了传统的PI模型与逆模型,通过理论与仿真分析了模型应用的局限性并基于此建立了改进的PI模型与逆模型,但该模型在改变GMA预压力的情况下并不能很好的预测磁滞曲线,因此又建立了基于改进的PI模型的应力相关磁滞非线性模型。以上模型都是GMA在准静态下所建立的,对于其在动态条件下,又建立了一种率相关的PI动态模型,通过实验验证了模型的正确性和可预测性。第四章建立了基于J-A磁滞模型的超磁致伸缩执行器位移磁致非线性模型,并通过改进的模拟退火算法和改进的广义粒子群算法对模型参数进行了辨识优化,并通过实验验证了辨识参数的准确性。第五章完成对超磁致伸缩执行器的控制系统的实验调试,调试合格基础上,对系统进行比例迭代控制和基于PI逆模型的前馈控制研究试验,试验结果表明在输入频率低于60Hz下该控制算法可以有效的补偿GMA的滞回曲线。第六章对全文的研究工作与研究成果进行了概括。
[Abstract]:With the development of new functional materials, new actuators, such as those based on Giant Magnetostrictive material (GMMs), have been developed with the advantages of large output force, high energy density, high resolution accuracy and fast response.However, at the present stage, because of the complex intrinsic nonlinear and hysteresis characteristics of GMM, GMM and actuators with GMM as the core material have strong output displacement or force hysteresis in practical application, and the nonlinearity is serious.Some key technical problems, such as low positioning accuracy, need to be solved.In this paper, based on the application of Giant Magnetostrictive Actuator (GMA) in electro-hydraulic servo field, the nonlinear modeling and control techniques of GMA hysteresis are studied.The main research work of this paper can be divided into the following six parts: in the first chapter, the background and significance of the research are put forward, and the current situation and development of GMA hysteresis model and model parameter identification are summarized.This paper introduces the research status of GMA control technology at home and abroad, and briefly summarizes the research contents and the organization structure of the full text. Chapter 2 introduces the application characteristics of GMM, the structure and working principle of the actuator, and the experimental results of GMA.The hysteresis curves of actuator output displacement under different excitation current, prestress and magnetic induction intensity are analyzed.In the third chapter, the traditional Pi model and inverse model are established, and the limitations of the model are analyzed through theory and simulation. Based on this, the improved Pi model and inverse model are established.However, the model can not predict the hysteresis curve well when the GMA prepressure is changed, so the stress-dependent hysteresis nonlinear model based on the improved Pi model is established.The above models are all established by GMA under quasi-static condition. For these models, a rate dependent Pi dynamic model is established under dynamic conditions, and the correctness and predictability of the model are verified by experiments.In chapter 4, the displacement magnetostrictive nonlinear model of giant magnetostrictive actuator based on J-A hysteresis model is established, and the parameters of the model are identified and optimized by the improved simulated annealing algorithm and the improved generalized particle swarm optimization algorithm.The accuracy of identification parameters is verified by experiments.The fifth chapter completes the experimental debugging of the control system of the giant magnetostrictive actuator. On the basis of the qualified debugging, the proportional iterative control and the feedforward control experiment based on Pi inverse model are carried out.The experimental results show that the control algorithm can compensate the hysteresis curve of GMA effectively when the input frequency is lower than 60Hz.The sixth chapter summarizes the research work and research results.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB381;TP215
【参考文献】
相关期刊论文 前1条
1 李欣欣;王文;陈戬恒;陈子辰;;Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J];光学精密工程;2007年10期
,本文编号:1763433
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1763433.html
最近更新
教材专著