自行式悬索桥主缆检修车关键技术研究
本文关键词:自行式悬索桥主缆检修车关键技术研究 出处:《西南交通大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 主缆检修车 结构设计 脉动风模拟 风振响应 舒适性
【摘要】:主缆是悬索桥最为重要的受力构件,它承载着桥体主梁和车辆等重力载荷,由于主缆在桥梁使用期限内都无法更换,因此其健康状况与桥梁安全息息相关。目前,悬索桥主缆主要还是采用人工攀爬的方式进行检查维护,这种检修方式存在检查盲区,不能全方位检修主缆,而且高空作业难度大、效率低、精准性差、存在安全隐患。为解决以上问题,本文以贵瓮清水河悬索桥为研究对象,开展了主缆检修设备的研究。根据悬索桥主缆的结构形式和检修作业要求,提出了主缆检修车的整体设计方案。其次,通过对整车的行走力学理论计算、关键机构的设计与有限元分析,确保检修车的功能和性能满足使用要求。然后介绍了风的基本特性及模拟方法,基于Davenport风速谱和谐波叠加法模拟了脉动风速时程。运用ANSYS建立了检修车的抗风稳定性模型并进行了动力特性分析,研究了检修车在脉动风载荷激励下的动态响应。最后,运用Midas软件建立了悬索桥有限元模型并研究了主缆在脉动风作用下的动态响应。引入车辆工程领域的舒适性评价方法,对检修车的舒适性进行了评价。主要的研究结论包括:1.通过智能控制技术在检修车中应用,实现了检修车的自动过索夹及吊索和纠偏功能。完成了整车行走力学计算和摩擦系数试验,保证检修车爬坡角度不小于26°。抗倾覆校核表明检修车在6级风和500kg偏载作用下抗倾覆安全系数达3.0,不会发生翻转。驱动轮、压紧轮与主缆之间的接触应力在主缆表层缠包带的许用应力范围以内。2.提出了门型主桁架的设计方案,实现了对主缆的全方位检修;完成了主桁架多工况下的静力有限元计算,计算结果表明主桁架的强度和刚度均满足使用要求。设计了检修车的驱动机构和压紧轮机构,实现了检修车自行走和过索夹及吊索的功能。3.检修车抗风性能的研究结果表明:压紧轮的数量对检修车抗风稳定性起着决定性作用,而压紧轮打开位置对整车抗风性能影响不明显;检修车结构横桥向的刚度较差,对横向风载荷比较敏感;检修车的风载荷视为静载的处理方法相比于脉动风时程分析法的计算结果偏小,脉动风作用下的复合应力比静载时提高了 11.5%,横桥向的最大位移提高了 70.3%。4.检修车在不同主缆高度下的舒适性评价结论表明:主缆全长范围内,基于总加权加速度法的检修车舒适性评价结论均为"没有不舒适";采用K系数法时,主缆相对桥面高度5~35m之间检修车舒适性评定为"能忍受短期振动",35~113m之间的舒适性评定为"能忍受任意长时间振动",检修车行走舒适性随着主缆高度的增加而提升。
[Abstract]:The main cable is the most important force member of suspension bridge. It bears the gravity load such as bridge girder and vehicle, because the main cable can not be replaced during the bridge life. Therefore, the health of the bridge is closely related to the safety of the bridge. At present, the main cable of the suspension bridge is mainly inspected and maintained by means of manual climbing, which exists in the blind area of inspection and cannot be overhauled in all aspects. And the high altitude operation is difficult, the efficiency is low, the accuracy is poor, the existence safety hidden danger. In order to solve the above question, this article takes the Guiweng Qingshui River suspension bridge as the research object. According to the structure of the main cable of suspension bridge and maintenance operation requirements, the overall design of the main cable inspection and repair vehicle is put forward. Secondly, through the theoretical calculation of the walking mechanics of the whole vehicle. The design of the key mechanism and the finite element analysis ensure that the function and performance of the inspection and repair vehicle meet the operational requirements. Then the basic characteristics of the wind and the simulation method are introduced. Based on the Davenport wind speed spectrum and harmonic superposition method, the pulsating wind speed time history is simulated, and the anti-wind stability model of the inspection and repair vehicle is established by using ANSYS and the dynamic characteristics are analyzed. The dynamic response of the vehicle under pulsating wind load is studied. Finally. The finite element model of suspension bridge is established by using Midas software, and the dynamic response of main cable under pulsating wind is studied. The comfort evaluation method in vehicle engineering field is introduced. The main research conclusions include: 1. The application of intelligent control technology in the inspection and repair of the vehicle. The functions of automatic cable clamp, slings and deviation correction are realized, and the mechanical calculation and friction coefficient test of the whole vehicle are completed. It is ensured that the climbing angle of the inspection vehicle is not less than 26 掳. The anti-overturning check shows that the safety factor of anti-overturning is 3.0 under the action of 6 grade wind and 500kg eccentric load, and the overturn and drive wheel will not occur. The contact stress between the compression wheel and the main cable is within the allowable stress range of the surface wrapping band of the main cable. 2. The design scheme of the portal main truss is put forward and the omnidirectional overhaul of the main cable is realized. The static finite element calculation of the main truss under multiple working conditions has been completed. The results show that the strength and stiffness of the main truss meet the requirements of application. The driving mechanism and the compression wheel mechanism of the inspection and repair vehicle are designed. The research results show that the number of compression wheels plays a decisive role in the wind stability of the inspection and repair vehicle. 3. The research results show that the number of compression wheels plays a decisive role in the wind stability of the inspection and repair vehicle. 3. The research results show that the number of compression wheels plays a decisive role in the wind stability of the inspection and repair vehicle. However, the opening position of the compression wheel has no obvious effect on the wind resistance of the whole vehicle. The stiffness of the cross-bridge is poor and sensitive to the transverse wind load. Compared with the calculation results of pulsating wind time history analysis, the combined stress under pulsating wind is 11.5% higher than that under static load. The maximum displacement of the transverse bridge is increased by 70.3. 4. The evaluation results of the comfort of the inspection and repair vehicle under different main cable heights show that: the main cable is within the full length range. Based on the total weighted acceleration method, the evaluation conclusions of the comfort of the inspection and repair vehicle are "no discomfort"; When the K coefficient method is used, the comfort of the inspection and repair vehicle between the height of the main cable and the bridge deck is assessed as "enduring short-term vibration". The comfort between 35m and 113m is evaluated as "can endure any long time vibration", and the comfort of the inspection and repair vehicle increases with the increase of the height of the main cable.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U445.7
【相似文献】
相关期刊论文 前10条
1 刘晶波;浅谈货车检修车统计的网络化管理[J];铁道车辆;2004年10期
2 赵永才;;使用信息化手段均衡合理扣修检修车[J];哈尔滨铁道科技;2009年01期
3 马云岭;陈雷;吴月东;;铁路货车检修车管理的现状及信息化全过程管理的研究[J];铁道车辆;2007年09期
4 刘铁铮;关于改革货车检修指标统计方法的探讨[J];铁道运输与经济;1984年01期
5 杨萍;鹤洞大桥主桥钢梁检修车的研制[J];广船科技;2000年01期
6 杨青年;防止客车发电机烧损的措施[J];铁道车辆;1993年06期
7 张昆龙;;ND_5型机车水泵检修车[J];内燃机车;1987年05期
8 左兴泉;;检修车床的经验[J];机械工人;1957年02期
9 杨明亮,吕晓光,,马从谦,贺明亮;风扇磨检修车的液压行走机构[J];液压与气动;1994年03期
10 贾国瑜;遥控式斜拉索检修车[J];上海建设科技;1995年01期
相关会议论文 前2条
1 李成新;;关于检修车管理问题的几点探讨[A];2008年科技学术研讨年提速安全与和谐铁路论文集[C];2008年
2 孟晓亮;朱乐东;丁泉顺;;检修车轨道位置对半封闭分离双箱桥梁断面涡振性能的影响[A];第十四届全国结构风工程学术会议论文集(中册)[C];2009年
相关重要报纸文章 前3条
1 石峰 常相辉;双鸭山电业局 研制成功“输电线路座椅式检修车”[N];东北电力报;2009年
2 李一萍 刘明会 南锋财 郭秦;国内首台接触网综合检修车自主研制成功[N];中国工业报;2012年
3 本报特约通讯员 张勇;刷新检修车任务记录的背后[N];人民铁道;2006年
相关硕士学位论文 前4条
1 李雯;基于ARCNET网络的生产线自动检修车主控制系统设计[D];西安石油大学;2015年
2 刘鹏;基于CAN网络的生产线自动检修车从控制系统设计[D];西安石油大学;2015年
3 衡亚霖;自行走悬索桥主缆检修车研究与设计[D];西南交通大学;2016年
4 江周;自行式悬索桥主缆检修车关键技术研究[D];西南交通大学;2017年
本文编号:1383986
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1383986.html