当前位置:主页 > 科技论文 > 路桥论文 >

基于K近邻算法和支持向量回归组合的短时交通流预测

发布时间:2018-01-12 14:18

  本文关键词:基于K近邻算法和支持向量回归组合的短时交通流预测 出处:《公路交通科技》2017年05期  论文类型:期刊论文


  更多相关文章: 交通工程 预测模型 K近邻算法 支持向量回归 短时交通流


【摘要】:为了提高短时交通流的预测精度,向交通管理部门和出行者提供更加准确可靠的交通信息,基于非参数回归与支持向量回归方法的特点,提出了一种混合预测模型(KNN-SVR)。该模型利用K近邻方法的搜索机制,重建与当前交通状态近似的历史交通流时间序列,然后利用支持向量回归原理实现短时交通流预测。针对实际的交通流数据,考虑预测路段上下游交通流的影响,对提出的KNN-SVR模型的预测精度进行了分析。研究结果表明:同时考虑预测路段和其邻近路段交通流影响的KNN-SVR模型具有更好的预测精度,其预测误差最小,平均为8.29%,而仅仅考虑预测路段交通流影响的KNN-SVR模型,其预测误差略高,平均为9.16%;KNN-SVR模型的预测精度优于传统单一的预测方法,如K-近邻非参数回归、支持向量回归以及神经网络方法。
[Abstract]:In order to improve the forecasting precision of short - term traffic flow , a mixed prediction model ( KNN - SVM ) is proposed to provide more accurate and reliable traffic information to traffic management departments and travelers . Based on the characteristics of non - parametric regression and support vector regression method , this paper presents a mixed prediction model ( KNN - support vector regression ) .

【作者单位】: 东南大学智能运输系统研究中心;
【基金】:国家自然科学基金项目(61573106) 江苏省普通高校研究生科研创新计划项目(KYLX_0168)
【分类号】:U491.14
【正文快照】: regression(SVR);short-term traffic flow0引言智能交通系统被认为是缓解城市道路拥堵、减少汽车污染、防治交通事故以及实现节约能源等问题的有效方法。其中,作为智能交通系统重要基础之一的短时交通流预测,是实时、准确、快速实现交通管理、诱导及控制的关键[1]。因此,对短

【相似文献】

相关期刊论文 前10条

1 偶昌宝,俞亚南;短时交通流预测的多层递阶方法[J];城市道桥与防洪;2004年05期

2 高丽梅;高鹏;陈俊波;;数据融合技术在短时交通流预测中的应用[J];交通科技;2010年S1期

3 唐世星;;改进的支持向量机算法在短时交通流预测中的应用[J];承德石油高等专科学校学报;2012年01期

4 王娇;李军;;最小最大概率回归机在短时交通流预测中的应用[J];公路交通科技;2014年02期

5 贺国光,李宇,马寿峰;基于数学模型的短时交通流预测方法探讨[J];系统工程理论与实践;2000年12期

6 宗春光,宋靖雁,任江涛,胡坚明;基于相空间重构的短时交通流预测研究[J];公路交通科技;2003年04期

7 杨世坚,贺国光;基于模糊C均值聚类和神经网络的短时交通流预测方法[J];系统工程;2004年08期

8 王进;史其信;;短时交通流预测模型综述[J];中国公共安全(学术卷);2005年01期

9 杨芳明;朱顺应;;基于小波的短时交通流预测[J];重庆交通学院学报;2006年03期

10 邓志龙;李全;陈茜;;基于灰色系统理论的短时交通流预测[J];公路交通技术;2006年01期

相关会议论文 前3条

1 郑德署;何世伟;许旺土;;分形理论在短时交通流预测中的应用[A];2008第四届中国智能交通年会论文集[C];2008年

2 唐丽娜;张卫华;;短时交通流预测方法的比较研究[A];2007第三届中国智能交通年会论文集[C];2007年

3 于建玲;商朋见;关积珍;;改进的相空间重构方法在短时交通流预测中的应用[A];2008第四届中国智能交通年会论文集[C];2008年

相关博士学位论文 前1条

1 姚智胜;基于实时数据的道路网短时交通流预测理论与方法研究[D];北京交通大学;2007年

相关硕士学位论文 前10条

1 高为;基于数据挖掘和数据融合的短时交通流预测研究[D];重庆交通大学;2011年

2 齐霖;基于支持向量机回归的短时交通流预测与系统实现[D];东北大学;2013年

3 邱世崇;基于时空特性的城市道路短时交通流预测研究[D];重庆交通大学;2015年

4 沈小峰;交通流量短时预测的算法研究[D];浙江工业大学;2015年

5 江小燕;短时交通流预测方法研究[D];扬州大学;2015年

6 杨慧慧;城市交通流短时预测模型研究[D];河南理工大学;2015年

7 王鹏;基于嵌入式系统的城市智能交通控制器研究[D];辽宁科技大学;2016年

8 罗婷;模拟退火混沌粒子群算法在短时交通流预测中的应用[D];西南交通大学;2016年

9 黄晓慧;基于布谷鸟算法的小波神经网络短时交通流预测研究[D];西南交通大学;2016年

10 褚鹏宇;融合时空信息的短时交通流预测[D];西南交通大学;2016年



本文编号:1414614

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1414614.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户af38e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com