玄武岩纤维高粘沥青桥面铺装层数值分析
本文关键词:玄武岩纤维高粘沥青桥面铺装层数值分析 出处:《浙江大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 玄武岩纤维 桥面铺装 数值分析 荷载应力 广义Maxwell模型
【摘要】:为进一步推广玄武岩纤维增强高粘沥青混合料在公路领域的应用,深入开展长寿命沥青桥面铺装层的研究,本文依托实际工程进行了水泥混凝土先简支后连续T梁桥的沥青铺装层有限元数值分析。采用整体到局部的思路,建立三维桥梁与布局梁段子模型,分析在车辆荷载作用处铺装层内部的应力应变分布规律。探讨了桥梁形式、铺装层材料参数以及层间粘结状态对于铺装层受力状态的影响。并在温度场分析的基础上,结果相关室内试验,得到了高温条件下玄武岩纤维增强高粘沥青铺装层的粘弹性力学响应。 首先,考虑到预应力先简支后连续T梁桥跨结构的整体变形以及动力特征对沥青混凝土铺装层受力的影响,利用Midas/civil软件建立桥梁结构空间梁格模型,完成桥跨结构的整体分析。获得了在二期恒载、温度荷载以考虑冲击效用的车道荷载共同作用下,桥梁整体挠度与支座、跨中位置处梁段应力分布规律以及相应的最不利加载荷位。 然后,考虑水平以及竖直荷载综合作用,运用ABAQUS有限元软件进行玄武岩纤维高粘沥青桥面铺装层三维模型的力学研究。利用子模型法,得出荷载作用处,沥青铺装层层间连续体系沿厚度方向的横纵向拉应力、剪应力以及应变的分布规律。并进行了铺装层厚度、弹性模量的参数敏感性分析。另外,考虑到使用过程中粘结层材料出现应力损伤的情况,采用cohesive粘聚接触模拟铺装层滑动体系的受力状态。 再次,利用ABAQUS建立二维T梁模型。考虑太阳辐射能、地面辐射、空气对流等因素,并结合工程所在地夏季的气象资料,进行昼夜24小时铺装层稳态热传导分析。获得铺装层内部温度随时问的变化规律,以及铺装层混合料的导热系数、比热容与铺装层厚度对温度场分布的影响。 最后,根据SMA-13玄武岩纤维高粘沥青混合料的蠕变试验数据,拟合获得不同温度下广义Maxwell模型的基本参数。建立二维有限元模型,进行周期荷载下铺装层受力分析,以获得峰值荷载下最大弯沉、蠕变变形的变化规律。
[Abstract]:In order to popularize the application of basalt fiber reinforced high viscosity asphalt mixture in highway field, the study of long-life asphalt bridge deck pavement is carried out. In this paper, the finite element numerical analysis of asphalt pavement of cement concrete first supported and then continuous T-beam bridge is carried out based on practical engineering. The distribution law of stress and strain in the pavement under vehicle load is analyzed, and the bridge form is discussed. The influence of material parameters and interlayer bonding state on the stress state of pavement is discussed. Based on the analysis of temperature field, the results are tested in laboratory. The viscoelastic response of high viscosity asphalt pavement reinforced by basalt fiber was obtained at high temperature. Firstly, considering the whole deformation of the span structure of prestressed concrete bridge and the influence of dynamic characteristics on the stress of asphalt concrete pavement. The spatial girder model of bridge structure is established by using Midas/civil software, and the whole analysis of bridge span structure is completed. The dead load is obtained in the second phase. Under the combined action of temperature load and driveway load considering the impact utility, the stress distribution law and the most unfavorable load position of the whole deflection and support of the bridge and the beam section in the middle of the span are obtained. Then, considering the comprehensive effect of horizontal and vertical loads, the ABAQUS finite element software is used to study the three-dimensional model of basalt fiber high-viscosity asphalt deck pavement, and the sub-model method is used. The distribution of transverse and longitudinal tensile stress, shear stress and strain along the thickness direction of the continuous system between layers of asphalt pavement is obtained, and the thickness of the pavement is carried out. The parameter sensitivity analysis of elastic modulus. In addition, considering the stress damage of the adhesive layer material, the stress state of the sliding system was simulated by using cohesive adhesive contact. Thirdly, the two-dimensional T-beam model is established by using ABAQUS. The solar radiation energy, surface radiation, air convection and other factors are taken into account, and the meteorological data of the site of the project in summer are taken into account. The steady-state heat conduction analysis of the pavement is carried out 24 hours a day. The variation of the internal temperature of the pavement and the thermal conductivity of the pavement mixture are obtained. The effect of specific heat capacity and pavement thickness on temperature field distribution. Finally, according to the creep test data of SMA-13 basalt fiber high viscosity asphalt mixture, the basic parameters of generalized Maxwell model at different temperatures are obtained and the two-dimensional finite element model is established. In order to obtain the law of maximum deflection and creep deformation under the peak load, the stress analysis of pavement under periodic load is carried out.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U443.33
【参考文献】
相关期刊论文 前10条
1 季节,龙佩恒,王毅娟,徐世法,冯治安,高建立;用有效活载挠度确定钢筋混凝土桥面铺装层的厚度[J];北京建筑工程学院学报;2001年03期
2 王磊;吴海军;周志祥;;日照非线性温差下桥面铺装层厚度对结构受力影响分析[J];重庆交通大学学报(自然科学版);2008年05期
3 车轶,宋玉普;混凝土高拱坝孔口三维非线性分析[J];大连理工大学学报;2003年02期
4 王晓,程刚,黄卫;环氧沥青混凝土性能研究[J];东南大学学报(自然科学版);2001年06期
5 陈启飞;李爱群;赵大亮;王浩;;预应力混凝土斜拉桥主梁局部应力子模型分析及试验[J];东南大学学报(自然科学版);2007年02期
6 赵丽华;;玄武岩矿物纤维改善SMA性能研究[J];低温建筑技术;2010年08期
7 郑振飞,吴庆雄;多梁式斜梁桥的广义梁格法[J];福州大学学报(自然科学版);1998年04期
8 李爱群;王浩;;子模型法在超大跨悬索桥钢箱梁应力分析中的应用[J];工程力学;2007年02期
9 陈强,付修义,刘玉琼,覃克;特立尼达湖(TLA)改性沥青试验研究[J];公路;2005年09期
10 刘新权;丁庆军;姚永永;胡曙光;;高粘度改性沥青配制钢箱梁桥面SMA铺装层的研究[J];公路;2007年09期
,本文编号:1436555
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1436555.html