基于RSSI定位的智能公交系统设计
本文关键词: 无线传感器网络 CC2530 CC2591 RSSI 自学习定位算法 到站时间预测 出处:《成都理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:公交车辆先行战略的确立是减缓交通拥挤问题的有效措施。城市公交系统向智能化,人性化发展是一个必然趋势。公交定位系统作为城市公交系统的一个子系统,有着重要的研究价值。而无线传感网络技术,将传感技术、无线通信技术和网络技术合为一个整体,具有成本低、体积小、自组织等特点,是一种可行的公交车辆定位的方案。本课题采用的由无线传感器网络组建的城市公交车定位系统,具有成本低、实现容易,定位精度能够满足需要等特点。论文的具体工作包括:在了解国内外车辆定位方法的研究现状和研究方法的基础上,从课题研究目的和应用意义出发,确定了无线传感网络的公交定位系统的总体框架。依据定位系统中传感器节点的功能,从硬件方面对电路的各个环节作了具体阐述。系统节点采用TI公司的CC2530作为处理模块,外接CC2591射频前端共同实现系统功能。研究工作具体分为上层的无线传输模块和下层的测试底板来进行。论文首先对公交车辆定位的几种相关技术进行了分析,介绍了定位的基本原理,对射频系统工作原理进行分析,并且可以应用在节点发射前端部分上,然后介绍了无线数据传输技术。随后对公交定位信息产生误差的原因从多个角度进行了研究,并从其误差产生的根源出发,提出了相对应的补偿方案。定位算法是本课题的一个研究重点。在分析已有的车辆定位方法优缺点的基础上,着重分析其中的一种定位算法,基于RSSI的无线传感定位。在此基础上,利用其自身的优点,进行一定的改进,引入自学习的思想,采用一种基于RSSI的自学习式的节点定位算法,解决直线道路和曲线道路情况下的定位问题,从而获知公交车辆与站台之间的实际距离。在定位算法的基础上,对公交车辆到站时间进预测。依据电子站牌路段的平均速度和到站距离,从而预测出公交车辆到站的时间。在此基础上,课题在对定位系统和算法所做的研究基础上进行相关实验,懫集传感器节点的信号强度,通过Matlab仿真对数据进行分析,从而对算法进行验证。实验结果表明,节点的通信距离可以达到1000米左右,且数据传输过程比较稳定,定位测距误差也在可接受的范围内,方案切实可行。该定位系统设计简单,设备成本低廉。一方面为系统的进一步开发提供了一定的理论依据,具有一定的参考价值;另一方面能够降低使用费用,使得无线传感器网络的公交车定位系统被广泛应用。最后,利用深圳市M382路公交车的实时定位数据进行实验,实验结果表明论文提出的优化方案在数据处理速度上有了较大的改善,预测精度也在可接受范围内,在实际应用时能有较好的发挥。
[Abstract]:The establishment of public transport vehicle first strategy is an effective measure to reduce traffic congestion. The development of humanization is an inevitable trend. As a subsystem of urban public transport system, public transportation positioning system has important research value. And wireless sensor network technology, will sensing technology. Wireless communication technology and network technology together as a whole, with low cost, small size, self-organization and other characteristics. It is a feasible scheme of bus positioning. The city bus location system which is constructed by wireless sensor network has low cost and easy to realize. The specific work of this paper includes: on the basis of understanding the research status and research methods of vehicle positioning methods at home and abroad, starting from the purpose of research and the significance of application. The overall frame of the public transportation positioning system of wireless sensor network is determined. According to the function of sensor nodes in the positioning system. The hardware aspects of the circuit are described in detail. The system node uses TI company's CC2530 as the processing module. The external CC2591 RF front-end realizes the system function together. The research work is divided into the upper layer wireless transmission module and the lower layer test bottom board. Firstly, the thesis carries on several related technologies of bus vehicle positioning. The analysis. This paper introduces the basic principle of positioning, analyzes the working principle of RF system, and can be applied to the front-end part of nodal transmission. Then the wireless data transmission technology is introduced. Then the causes of the errors in the location information of public transportation are studied from many angles and the root causes of the errors are analyzed. A corresponding compensation scheme is put forward. The localization algorithm is one of the research focuses in this paper. On the basis of analyzing the advantages and disadvantages of the existing vehicle positioning methods, one of the localization algorithms is emphatically analyzed. Wireless sensor location based on RSSI. On this basis, using its own advantages, some improvements, the introduction of the idea of self-learning, using a self-learning node location algorithm based on RSSI. In order to get the actual distance between the bus and the platform, the location problem in the case of straight road and curve road is solved. On the basis of the average speed and distance of the electronic stop sign, the arrival time of the bus is forecasted. On the basis of this, the arrival time of the bus is predicted. Based on the research of the localization system and the algorithm, the thesis carries on the related experiment, collects the signal intensity of the sensor node, and analyzes the data through the Matlab simulation. The experimental results show that the communication distance of the node can reach about 1000 meters, and the process of data transmission is relatively stable, and the error of location and ranging is also within the acceptable range. The design of the positioning system is simple and the equipment cost is low. On the one hand, it provides a certain theoretical basis for the further development of the system and has certain reference value. On the other hand, it can reduce the cost of use, making the wireless sensor network bus positioning system is widely used. Finally, using the real-time location data of Shenzhen M382 bus to carry on the experiment. The experimental results show that the proposed optimization scheme has greatly improved the speed of data processing, and the prediction accuracy is within the acceptable range, and it can play a better role in practical application.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495;U491.17
【参考文献】
相关期刊论文 前10条
1 刘运杰;金明录;崔承毅;;基于RSSI的无线传感器网络修正加权质心定位算法[J];传感技术学报;2010年05期
2 付晶燕;杨晓光;俞洁;;快速公交系统中途站点优化设计方法研究[J];城市交通;2007年03期
3 章威;徐建闽;张孜;;基于出租车GPS定位技术的ITS共用信息平台实时路况信息采集及处理方法[J];公路交通科技;2007年05期
4 田红彬;吉炜寰;;基于GPS的公交车智能调度与位置发布系统[J];电视技术;2013年11期
5 邹建基;;ZigBee危化学品数据采集节点的设计与实现[J];电脑编程技巧与维护;2015年07期
6 苟胜难;;基于改进的RSSI无线传感器网络节点定位算法研究[J];计算机应用研究;2012年05期
7 庄继晖;谢辉;严英;;基于GPRS的电动汽车道路行驶工况自学习[J];天津大学学报;2010年04期
8 安娜;张征;;智能公交移动平台实时查询客户端[J];计算机系统应用;2014年03期
9 李艳;葛年明;陈杰;;基于ZigBee的多传感器物联网无线监测系统设计[J];自动化技术与应用;2015年01期
10 寿向晨;徐宏毅;;无线传感器网络中RSSI定位算法的设计与实现[J];武汉大学学报(工学版);2015年02期
相关硕士学位论文 前1条
1 迟晓强;面向公交用户的移动智能推荐平台[D];北京邮电大学;2013年
,本文编号:1446162
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1446162.html