当前位置:主页 > 科技论文 > 路桥论文 >

基于博弈论的道路交叉口信号配时方案研究

发布时间:2018-02-16 16:00

  本文关键词: 交叉口 信号配时 斗鸡博弈 Nash bargainingg Shapley估值 出处:《北京交通大学》2015年硕士论文 论文类型:学位论文


【摘要】:平面交叉口是城市交通的关键,对交叉口信号配时的研究具有重大实际意义。本文将博弈论的思想应用于解决交叉口信号配时问题,在分析交叉口信号配时体现的博弈特性的基础上,针对交叉口信号配时中不同的问题和目标,建立几种交叉口信号配时的博弈模型,通过博弈求解,提出基于博弈论的信号配时方案。主要研究内容包括以下几个方面: 首先,针对两相位非固定周期的单交叉口和相邻两交叉口,提出基于斗鸡博弈的交叉口信号配时方案。对两相位交叉口,以各相位作为博弈参与者、各相位信号灯状态(红灯、绿灯)作为策略集、利用排队长度相反数作为赢得值建立博弈模型;对相邻两交叉口,以每个路口为参与者,每个路口的信号灯状态为策略集,每个路口整体排队长度相反数为赢得值建立博弈模型。针对上述博弈模型,以固定时长为博弈周期,基于非合作博弈中经典的斗鸡博弈模型,求得上述博弈混合策略Nash均衡,给出下一个博弈周期内的信号配时方案,实现信号灯状态的合理分配,提高交叉口的通行效率。 其次,针对四相位固定周期的单交叉口,提出基于合作博弈的交叉口信号配时方案。以各相位作为合作博弈的参与者,各相位绿灯时间作为策略集,各相位车辆排队长度作为赢得值,建立相应的合作博弈模型,针对上述博弈模型分别采用Nash bargaining解法和Shapley估值解法进行求解。由于Nash bargaining解法针对初始bargaining能力相同的二人博弈,因此适用于不区分干路、支路的交叉口,并需要进行两次二人博弈;Shapley估值解法则可直接应用于区分干路、支路的交叉口进行博弈。根据上一周期结束时各相位排队车辆的长度,实时地调整下一周期各相位绿灯时间。通过博弈求解达到参与者赢得值的最大,即下一周期结束时路口车辆排队长度的最小化。 最后,利用MATLAB对所提的各个方案进行仿真,验证了所提配时方案的有效性,并与固定配时进行比较说明所提方案可以有效减少路口各相位的车辆排队长度,对提高路口通行效率有一定实际指导意义。
[Abstract]:Intersection is the key of urban traffic, which is of great practical significance to the study of intersection signal timing. In this paper, the game theory is applied to solve the intersection signal timing problem. On the basis of analyzing the game characteristics of intersection signal timing, aiming at different problems and objectives of intersection signal timing, several game models of intersection signal timing are established and solved by game. A signal timing scheme based on game theory is proposed. The main research contents include the following aspects:. First of all, a signal timing scheme based on game game is proposed for single intersection with two phases and adjacent intersections. For two-phase intersections, each phase is used as a game participant. Each phase signal state (red light, green light) is used as the strategy set, and the game model is established by using the opposite number of queue length as the winning value, and for the adjacent two intersections, each intersection is regarded as the participant, and the signal light state of each intersection is the strategy set. Based on the above game model, based on the classic game model of the non-cooperative game, the Nash equilibrium of the above game mixed strategy is obtained by taking the fixed time as the game period, and the total queue length of each intersection is opposite to the winning value. The signal timing scheme in the next game cycle is given to realize the reasonable distribution of signal lights and improve the traffic efficiency of intersection. Secondly, a signal timing scheme based on cooperative game is proposed for single intersection with four-phase fixed period. Each phase is used as the participant of the cooperative game, and the green light time of each phase is used as the strategy set. The corresponding cooperative game model is established for the queue length of each phase vehicle as the winning value. The Nash bargaining solution and the Shapley estimation method are used to solve the above game model, respectively. Because the Nash bargaining solution is aimed at the two-person game with the same initial bargaining capability, the corresponding cooperative game model is established. Therefore, it can be applied to the intersection without differentiating the trunk road and the branch road, and it needs two times of two-player game and Shapley estimation method, which can be directly applied to distinguish the trunk road from the branch road intersection and play the game. According to the length of each phase queue vehicle at the end of the last cycle, The green time of each phase of the next cycle is adjusted in real time and the maximum of the participants' winning value is obtained by the game solution which is the minimization of the queue length at the end of the next cycle. Finally, the proposed scheme is simulated by MATLAB, and the validity of the proposed scheme is verified. The comparison with the fixed timing scheme shows that the proposed scheme can effectively reduce the queue length of the vehicle at each phase of the intersection. It has certain practical guiding significance to improve the traffic efficiency of intersection.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491.54

【参考文献】

相关期刊论文 前10条

1 夏新海;许伦辉;;交叉口Agent间的博弈学习协调方法[J];重庆交通大学学报(自然科学版);2010年02期

2 郭继孚;刘莹;余柳;;对中国大城市交通拥堵问题的认识[J];城市交通;2011年02期

3 管志忠;;合作对策问题的MATLAB程序实现及应用[J];池州学院学报;2008年03期

4 郑长江,王炜;混合交通流条件下信号交叉口配时优化设计[J];公路交通科技;2005年04期

5 王秋平;谭学龙;张生瑞;;城市单点交叉口信号配时优化[J];交通运输工程学报;2006年02期

6 李立源,曹大铸;道路交通流最优预测与交叉口最优控制[J];控制理论与应用;1993年01期

7 齐驰;侯忠生;贾琰;;基于排队长度均衡的交叉口信号配时优化策略[J];控制与决策;2012年08期

8 蒋亚磊;;基于博弈论的城市交通拥挤成因及对策研究[J];兰州交通大学学报;2007年01期

9 郝建根;侯忠生;柳向斌;;基于多参数规划的单交叉口排队长度均衡控制[J];控制与决策;2013年04期

10 朱铭琳;陈阳舟;;基于博弈的交叉口交通信号配时系统设计[J];计算机仿真;2013年07期



本文编号:1515893

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1515893.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c1ae2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com