曲线连续梁桥施工监控技术研究
本文选题:曲线梁桥 切入点:施工监控 出处:《兰州交通大学》2017年硕士论文 论文类型:学位论文
【摘要】:弯桥是为适应地形、地物的要求,而逐渐发展起来的一种桥梁结构形式,相对于直桥或斜交桥而言,弯扭耦合效应是弯桥突出的受力特点。亦是造成曲线内侧卸载、外侧加载最主要的原因。在圆心角较小、桥宽较大时,曲线内外侧受力出现明显差异,内侧甚至出现拉应力。鉴于弯桥的受力特点,有必要对较大跨度弯桥施工过程进行全方位、实时跟踪监控,以确保施工安全,成桥后线形、内力满足设计要求。桥梁施工监控技术发展已有一段历程,监控内容、方法日趋成熟。但由于曲线桥监控实例还比较少,监控要点多且复杂,本文结合工程实例对桥梁施工监控技术进行运用、研究,借助有限元分析软件Midas/Civil建立全桥模型,对悬臂施工各个节段进行实时跟踪监控,以线形、内力作为立足点,对桥梁施工全过程进行监测、调控,确保成桥线形及内力满足设计要求,同时保证施工安全。另外,鉴于服役桥梁安全运营的考虑,本文提出对在役桥梁健康状态进行监测。从被动的加固、维修到主动的健康状态监测,从而对在役桥梁健康状态有针对性的维修、检护,使其安全、耐久的运营。本文主要内容如下:(1)扼要介绍了弯桥发展历程、概况,以及不同于直桥或斜交桥的特点。包括受力特点、荷载、构造、施工特点,另外,简述了国内外施工监控技术的发展概况;(2)分析了曲线桥在水平面内的位移及竖向位移,为施工监控的进行提供理论依据。(3)详细介绍了施工监控的内容和方法,以及各种影响因素。提出了桥梁施工过程模拟分析的三种方法,并对参数误差提出现阶段较为常用的调整理论和方法;(4)结合工程实例对施工监控技术(线形、内力、边、中跨合拢)进行模拟分析。借助有限元分析软件Midas/Civil建立全桥模型,对悬臂施工节段预拱度进行计算。对曲线桥水平面内线位移及扭转角进行分析,对线形、内力数据进行归纳整理。(5)展望及结论部分,本桥由于曲率半径较大(600m),跨度较小(38.5+77+38.5m),因此在桥梁环向、径向方向的线位移及沿x、y、z轴的扭转角均比较小,在实际施工控制中可不必设置纠偏值。桥梁合拢后,得到了较为理想的状态,说明了假定的合理性。最后预测了今后施工监控发展方向。对于弯桥计算理论研究尚有不足,计算精度有待进一步提高。
[Abstract]:Curved bridge is a kind of bridge structure which is developed gradually in order to meet the requirements of terrain and ground objects. Compared with straight bridge or oblique bridge, the coupling effect of bending and torsion is the prominent force characteristic of curved bridge, and it also causes the inside of curve to unload. When the center angle is small and the bridge width is large, there are obvious differences in the internal and external side of the curve, and even tensile stress on the inner side of the curve. In view of the stress characteristics of the curved bridge, It is necessary to monitor the construction process of long-span curved bridge in all directions and in real time, so as to ensure the safety of construction, the shape of the back of the bridge, and the internal force to meet the design requirements. The method is becoming more and more mature, but the monitoring examples of curved bridges are still few and the monitoring points are more and more complicated. This paper applies the monitoring technology of bridge construction with engineering examples, studies and establishes the whole bridge model with the help of finite element analysis software Midas/Civil. The whole process of bridge construction is monitored and regulated to ensure that the line shape and internal force meet the design requirements and ensure the safety of the construction, taking the line shape and internal force of the cantilever construction as the foothold, and monitoring and controlling the whole process of the bridge construction, in order to ensure that the line shape and internal force of the bridge meet the design requirements, and ensure the safety of the construction. In view of the consideration of the safe operation of the bridges in service, this paper proposes to monitor the health status of the existing bridges, from passive reinforcement and maintenance to active monitoring of the health status of the existing bridges, so as to maintain, inspect and protect the health status of the bridges in service. The main contents of this paper are as follows: 1) briefly introduce the development course, general situation and characteristics of curved bridge, which are different from straight bridge or oblique bridge, including the characteristics of force, load, structure, construction, and construction. This paper briefly introduces the development of construction monitoring technology at home and abroad, analyses the displacement and vertical displacement of curved bridge in horizontal plane, and provides the theoretical basis for construction monitoring and control, and introduces in detail the contents and methods of construction monitoring and control. Three methods of simulation and analysis of bridge construction process are put forward, and the adjustment theory and method commonly used in the present stage of parameter error are put forward, which are combined with engineering examples to monitor and control construction technology (linear, internal force, edge). With the help of the finite element analysis software Midas/Civil, the full-bridge model is established to calculate the pre-camber of cantilever construction segment. The linear displacement and torsion angle of the horizontal plane of the curved bridge are analyzed. The internal force data are summarized and sorted out. (5) in the part of prospect and conclusion, due to the larger curvature radius of 600mb and the smaller span of 38.577 38.5mW, the linear displacement and the torsional angle along xynz axis are smaller in the circumferential and radial direction of the bridge. In the actual construction control, there is no need to set the deviation correction value. After the bridge is closed, a more ideal state is obtained, which shows the rationality of the assumption. Finally, the development direction of construction monitoring and control in the future is forecasted, and the theoretical research on the curved bridge calculation is still insufficient. The accuracy of calculation needs to be further improved.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U446
【参考文献】
相关期刊论文 前10条
1 武红健;朱庆锋;;线形监控技术在某铁路连续梁悬臂施工中的应用[J];建筑技术;2015年S1期
2 梁瑶;;桥梁施工监控技术[J];施工技术;2014年S1期
3 何庆华;卫星;;弯扭耦合下曲线混凝土箱梁截面应力状态的受力机理分析[J];铁道标准设计;2013年02期
4 高大峰;王方辉;任禹州;何新成;;卡尔曼滤波法在大跨连续梁桥施工控制中的应用[J];施工技术;2012年09期
5 姚健鹏;梁明盛;陈忠诚;;预应力混凝土连续箱梁桥悬臂施工监控[J];公路;2012年02期
6 李君;龚玉书;翟广范;;浅述曲线梁桥的发展与结构分析[J];黑龙江科技信息;2009年32期
7 王毅;叶见曙;;混凝土箱梁悬臂施工中温度梯度对标高影响的分析与控制[J];公路交通科技;2009年08期
8 沈典栋;梁锦锋;;大跨径连续梁桥施工预拱度预测[J];中南公路工程;2006年02期
9 卢哲安;于清亮;汪娟娟;;灰色理论在连续梁桥施工控制中的应用[J];武汉理工大学学报;2006年03期
10 吴俊强,余昆,吕运冰;竖曲线对桥梁施工控制的影响[J];武汉理工大学学报(交通科学与工程版);2005年05期
相关硕士学位论文 前2条
1 李文江;大跨度预应力混凝土连续梁桥施工控制[D];大连理工大学;2013年
2 杨可可;先简支后连续梁桥施工预拱度分析[D];中南林业科技大学;2013年
,本文编号:1651461
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1651461.html