当前位置:主页 > 科技论文 > 路桥论文 >

VANET中车辆间的协作精准定位技术研究

发布时间:2018-04-02 02:02

  本文选题:车载自组网 切入点:协作定位 出处:《南京邮电大学》2015年硕士论文


【摘要】:车载自组网(VANET,Vehicular Ad-hoc network)中车辆精确定位可以为交通部门管理、车队调度,以及车辆自身行驶安全和突发情况的紧急处理提供帮助。当前,全球导航卫星系统(GNSS,Global Navigation Satellite Systems)可以为现代车辆应用系统提供全面的位置速度信息,但定位精度不高,不能满足VANET中位置信息的精度要求,基于车与车(V2V,Vehicle to Vehicle)、车与基础设施(V2I,Vehicle to Infrastructure)之间相互通信的协作定位(CP,Cooperative Positioning)技术应运而生。针对上述的分析,本文对VANET中协作定位技术展开研究,主要工作如下:首先,本文研究了一种基于惯性导航(INS,Inertial Navigation Systems)和全球卫星导航系统(GPS,Global Positioning System)伪距双差的协作相对定位方法。该方法在GPS伪距双差相对定位技术的基础上,加入惯性导航系统INS的测量器件和高精度的里程仪,惯性导航测量器件用来补充GPS短时间中断时的车辆位置信息,高精度的里程仪用来修正INS的积累误差,然后通过数据融合技术,将GPS伪距双差、GPS信号的多普勒频移以及被高精度里程仪修正后的INS加速度等数据信息进行融合处理,从而获得具有良好精度的相对定位结果。仿真结果表明,该方法的定位性能优于无INS和里程仪时的定位性能。其次,针对GNSS盲区,本文研究了一种基于多普勒频移和接收信号强度(RSS,Received Signal Strength)混合的车辆协作定位技术。该技术通过接收附近车辆发射信号的多普勒频移,并将其与本地的RSS信息进行融合处理,改善RSS单独测距时的性能,再利用获得的车辆之间的相对距离实现车辆间的相对协作定位。仿真结果表明,采用该方法测距可以改善RSS单独测距时的精度,从而提高相对协作定位精度。最后,针对GNSS盲区中单独采用INS自主定位时误差随时间积累的问题,研究了一种基于车辆协作的惯性导航定位方法。该方法利用相反方向行驶的车辆在进行专用短程通信时交换的INS加速度、位置等信息,将各车辆的本地数据、邻近车辆的通信数据以及接收到的数据的多普勒频移进行融合处理,再使用数字地图进行位置信息的修正,从而实现对INS的定位性能的改善。仿真结果表明,采用该方法可以使INS的定位精度有显著的提高。
[Abstract]:The accurate location of vehicle in vehicle Ad Hoc Ad-hoc Network can be helpful for traffic department management, fleet scheduling, vehicle safety and emergency handling.At present, GNSS Global Navigation Satellite Systems can provide comprehensive position and velocity information for modern vehicle application systems, but the positioning accuracy is not high enough to meet the precision requirements of position information in VANET.Based on the communication between vehicle and V2V vehicle to vehicle, and the communication between vehicle and infrastructure, the technology of CPCooperative pointing out came into being.In view of the above analysis, this paper studies the cooperative positioning technology in VANET. The main work is as follows: firstly, this paper studies a cooperative relative positioning method based on inertial Navigation systems (ins) and global satellite navigation system (GPS).This method is based on the GPS pseudo-range double differential relative positioning technology, and adds the INS measurement device and the high-precision mileage meter in the inertial navigation system. The inertial navigation measurement device is used to supplement the vehicle position information during the short interruption of the GPS.The high precision mileage meter is used to correct the accumulated error of INS, and then through the data fusion technology, the Doppler frequency shift of the GPS pseudo-range double difference signal and the INS acceleration modified by the high-precision odometer are fused and processed.Thus, the relative positioning results with good accuracy are obtained.Simulation results show that the localization performance of this method is better than that without INS and odometer.Secondly, for the blind area of GNSS, a vehicle cooperative location technique based on Doppler frequency shift and received signal intensity is studied.By receiving the Doppler frequency shift of the nearby vehicle emission signal and combining it with the local RSS information, the technique improves the performance of the RSS ranging alone.Then the relative distance between the vehicles is used to realize the relative cooperative positioning between the vehicles.The simulation results show that this method can improve the accuracy of RSS single ranging and improve the accuracy of relative cooperative location.Finally, an inertial navigation method based on vehicle collaboration is proposed to solve the problem that the error accumulates with time when INS is used alone in the blind area of GNSS.In this method, the local data of each vehicle are obtained by using the information of INS acceleration, position and so on exchanged when vehicles travelling in the opposite direction are engaged in special short-range communication.The Doppler frequency shift of the adjacent vehicle communication data and the received data is fused, and then the position information is corrected by using the digital map to improve the positioning performance of the INS.Simulation results show that the positioning accuracy of INS can be greatly improved by using this method.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495

【参考文献】

相关期刊论文 前1条

1 刘小洋;伍民友;;车联网:物联网在城市交通网络中的应用[J];计算机应用;2012年04期



本文编号:1698268

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1698268.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8860b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com