支持向量机在出行链模式识别和影响因素分析中的应用(英文)
本文选题:出行链模式 + 支持向量机 ; 参考:《Journal of Southeast University(English Edition)》2017年01期
【摘要】:为了提高交通需求预测精度,综合考虑居民出行行为在时间维度上的分布,采用支持向量机、径向基神经网络和多项logit三种方法,基于居民活动目的,建立了出行链模式识别模型,并利用敏感性分析方法研究了解释因素对出行链模式选择的影响和对模型性能的贡献程度.结果显示:支持向量机模型在总体准确度和分类准确度上均优于其他2种方法,体现了支持向量机在小样本下的识别性能优势;证明了支持向量机能够较准确地反映多分类因素对于出行链模式选择行为的影响程度;因素对于不同出行链模式识别精度的贡献度差异表明了细化出行链模式及探索各个模式特有影响因素的重要性.支持向量机技术在交通需求预测建模及影响因素分析方面均具有实践意义.
[Abstract]:In order to improve the accuracy of traffic demand prediction, considering the distribution of travel behavior in time dimension, support vector machine (SVM), radial basis function neural network (RBF) and multi-item logit are adopted, which are based on the purpose of residents' activities.A trip chain pattern recognition model is established, and the influence of explanatory factors on trip chain pattern selection and its contribution to model performance are studied by sensitivity analysis.The results show that the support vector machine model is superior to the other two methods in the total accuracy and classification accuracy, which shows the superiority of support vector machine in small sample recognition.It is proved that support vector machine can accurately reflect the influence of multi-classification factors on the behavior of trip chain pattern selection.The difference in the contribution of factors to the recognition accuracy of different trip chain patterns indicates the importance of refining trip chain patterns and exploring the unique influencing factors of each pattern.Support vector machine (SVM) technology has practical significance in traffic demand forecasting modeling and factor analysis.
【作者单位】: 东南大学交通学院;
【基金】:The Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0177)
【分类号】:U491
【相似文献】
相关期刊论文 前10条
1 葛海峰;林继鹏;刘君华;丁晖;;基于支持向量机和小波分解的气体识别研究[J];仪器仪表学报;2006年06期
2 琚旭;王浩;姚宏亮;;支持向量机的一个边界样本修剪方法[J];合肥工业大学学报(自然科学版);2006年07期
3 张菁华;袁鑫;刘达;;基于支持向量机的电力工程最优投标报价决策研究[J];山东电力高等专科学校学报;2006年04期
4 张涛;段淑敏;;支持向量机在中医疾病症候诊断中的应用[J];华北水利水电学院学报;2007年03期
5 王晶;靳其兵;曹柳林;;面向多输入输出系统的支持向量机回归[J];清华大学学报(自然科学版);2007年S2期
6 陈丹;;多类支持向量机算法的研究[J];东莞理工学院学报;2007年05期
7 程丽丽;张健沛;马骏;;一种改进的加权边界调节支持向量机算法[J];哈尔滨工程大学学报;2007年10期
8 宋召青;崔和;胡云安;;支持向量机理论的研究与进展[J];海军航空工程学院学报;2008年02期
9 郭濵;孙晓梅;薛明;;基于壳向量的边界邻近支持向量机[J];黑龙江交通科技;2008年12期
10 许超;运士伟;舒云星;;基于支持向量机的混凝土测强换算模型[J];洛阳理工学院学报(自然科学版);2008年02期
相关会议论文 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:1753385
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1753385.html