预应力混凝土T形刚构桥静动力性能研究
发布时间:2018-04-20 11:20
本文选题:预应力混凝土 + T形刚构桥 ; 参考:《长安大学》2015年硕士论文
【摘要】:20世纪70年代末至90年代初,我国修建了大量预应力混凝土T形刚构桥梁,这些早期建造的桥梁随着使用年限增长,由于交通运输量增大、基础沉降、车辆超载、养护不当等原因,部分桥梁出现了大量的病害和破损,而引发安全隐患。本文以山东省台儿庄马兰公路大桥为工程背景,采用模型仿真分析和静动力性能试验两种方法,对该桥的静动力性能进行了研究。主要研究内容及结论如下:首先对依托工程进行介绍,阐述了该桥的现状概况,采用Midas Civil 8.2.1软件对该桥进行模型仿真分析,主要分析了最大悬臂端挠度的影响因素,为后续的加固改造提供建议,依据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)主要分析了承载能力极限状态主梁控制截面的抗弯承载能力和抗剪承载能力、验算了正常使用极限状态下主梁的主拉应力和挠度以及持久状况下主梁的正应力和主应力,结果表明除了主拉应力外,分析计算的内容均满足规范要求。设计该桥静力性能试验方案,按照设计的试验方案进行加载和卸载,对大桥在各个试验工况下,控制截面应力和试验测点挠度的实测值与静力分析得到的理论值进行分析和比较,结果表明该桥的弹性性能较差处于弹塑性工作状态。对该桥进行动力性能试验,首先用有限元软件进行动力特性分析,针对动力分析的前5阶模态,然后设计该桥的动力性能试验方案,将大桥动力性能试验的各个试验工况下测得的数据与理论数据对比分析,动力性能研究表明实桥整体刚度小于设计值,其上存在开裂或缺陷损伤部位。最后利用反应谱的分析方法对大桥的在地震作用下的响应进行研究,设计了4种工况,分别计算了该桥在E1和E2地震作用下主梁墩顶截面和墩底截面的弯矩和剪力以及最大悬臂端和墩顶三个方向上的位移并对提取的数据进行分析,发现各个方向上的地震动对各个方向上地震响应的影响规律,依据《公路桥梁抗震设计细则》(JTG/T B02-01-2008)对该桥的桥墩进行验算,验算结果表明该桥在地震作用下桥墩抗弯性能、墩底塑性铰区斜截面抗剪性能以及桥墩横桥向位移均满足规范要求。
[Abstract]:From the late 1970s to the early 1990s, a large number of prestressed concrete T-shaped rigid frame bridges were built in our country. With the increase of service life, these early bridges were built because of the increase of traffic volume, the settlement of foundation and the overload of vehicles. Improper maintenance and other reasons, some bridges appear a large number of diseases and damage, and lead to safety risks. In this paper, based on the engineering background of Ma Lan Highway Bridge in Taierzhuang, Shandong Province, the static and dynamic performance of the bridge is studied by two methods: model simulation analysis and static and dynamic performance test. The main research contents and conclusions are as follows: firstly, the paper introduces the supporting engineering, expounds the current situation of the bridge, analyzes the model of the bridge by using Midas Civil 8.2.1 software, and mainly analyzes the influence factors of the maximum cantilever deflection. According to the Design Code for reinforced concrete and Prestressed concrete Bridges and culverts of Highway (JTG D62-2004), the flexural bearing capacity and shear bearing capacity of the control section of the main beam under the limit state of bearing capacity are analyzed. The main tensile stress and deflection of the main beam under the normal service limit state and the normal stress and the principal stress of the main beam under the lasting condition are checked and calculated. The results show that the contents of the analysis and calculation all meet the requirements of the code except the main tensile stress. The static performance test scheme of the bridge was designed, and the bridge was loaded and unloaded according to the designed test scheme. The measured values of the controlled section stress and the deflection of the test point are analyzed and compared with the theoretical values obtained from the static analysis. The results show that the elastic properties of the bridge are poor in the elastic-plastic state. In the dynamic performance test of the bridge, the dynamic characteristics of the bridge are analyzed by finite element software, and then the dynamic performance test scheme of the bridge is designed for the first five modes of the dynamic analysis. The dynamic performance of the bridge under different test conditions is compared with the theoretical data. The dynamic performance study shows that the overall stiffness of the bridge is less than the design value and there are cracks or defects on the bridge. Finally, the response of the bridge under earthquake action is studied by using the method of response spectrum analysis, and four working conditions are designed. The bending moment and shear force of the top section and the bottom section of the main girder pier under E1 and E2 earthquakes were calculated, and the displacement of the maximum cantilever end and the pier top in three directions were calculated, and the extracted data were analyzed. The influence of ground motion in every direction on the seismic response in each direction is found. The pier of the bridge is checked and calculated according to the detailed rules for Seismic Design of Highway Bridges (JTG / T B02-01-2008). The results show that the flexural behavior of the pier of the bridge is affected by earthquake. The shear resistance of inclined section and the displacement of bridge pier in plastic hinge region meet the requirements of specifications.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U441;U448.23
【参考文献】
相关期刊论文 前10条
1 白春艳;李健;郑昕阳;余波;;T构桥振动过大病害的动力测试及分析[J];公路交通科技;2010年05期
2 洪应忠;;“T”型刚构桥在运营中变形的观测分析[J];公路;1980年01期
3 王海蛟;;浅析世界连续刚构桥的发展历程[J];黑龙江交通科技;2006年05期
4 朱玉华;黄海荣;胥玉祥;;基于性能的抗震设计研究综述[J];结构工程师;2009年05期
5 赖永星,成立社,郑观升;大型T构桥桥墩抗震动力计算[J];焦作工学院学报(自然科学版);2000年01期
6 阳春龙;何任远;;广东港东江公路大桥悬臂T构桥梁维修[J];现代交通技术;2014年02期
7 张嘉恒;孙立巍;冯晓光;;体外预应力对T形刚构桥振动特性的影响[J];桥梁建设;2006年04期
8 梁富会;;浅谈T形刚构桥承载力评定方法[J];四川建筑;2012年02期
9 徐龙军;谢礼立;胡进军;;抗震设计谱的发展及相关问题综述[J];世界地震工程;2007年02期
10 韦晓,袁万城,王志强,范立础;关于桥梁抗震设计规范反应谱若干问题[J];同济大学学报(自然科学版);1999年02期
相关硕士学位论文 前1条
1 冯庆华;T形刚构桥的静动力检测技术试验研究[D];吉林大学;2009年
,本文编号:1777539
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1777539.html