双钢轮压路机动力学分析与驾驶室减振研究
本文选题:双钢轮压路机 + 动力学建模 ; 参考:《上海交通大学》2015年硕士论文
【摘要】:双钢轮振动压路机在振动压实工作进行时,为达到压实效果良好,要求振动轮的激振较强;而为保证压路机司机的身体健康和零部件的使用寿命,又要求压路机驾驶室与上车的振动越小越好。因而,为在保证高工作效率同时兼顾司机健康与机器寿命,应当寻求合适的压路机振动系统与驾驶室振动控制解决方案,以降低振动轮激励源向上车及驾驶室的振动传递。本文基于双钢轮振动压路机上车与驾驶室减振的实际工程需要,主要进行的工作和取得的成果如下:1压路机系统动力学建模与分析。通过压路机系统的动力学理论建模,使用Matlab建立了驾驶室振动传递率与减振器刚度及阻尼之间的隐式数学关系。进一步的,通过驾驶室减振器变参数计算,分析了驾驶室减振器刚度和阻尼对上车架向驾驶室振动传递率的影响趋势,为减振器参数优化提供理论依据。2驾驶室减振器参数优化。将上车架向驾驶室的振动传递率最低作为优化的目标函数,已知驾驶室减振器之外的其他减振器刚度和阻尼参数为约束条件,使用Isight与Matlab联合优化驾驶室减振器的刚度和阻尼系数。通过优化计算与分析,得出了更优的减振器参数。优化结果表明:为使振动传递率最低,减振器刚度应尽量小,前减振器阻尼尽量小,而后减振器阻尼尽量大。3新型摩擦阻尼橡胶减振器开发。根据参数优化后得出的减振器参数,结合压路机驾驶室实际工况与安装要求,开发设计新型摩擦阻尼橡胶减振器,并测试其性能参数。4用Harmony软件对压路机振动系统进行动力学仿真分析。运用公司自主开发的动力学分析软件Harmony,对压路机驾驶室使用原有减振器与新型减振器的减振效果进行了仿真分析,结果表明:使用优化后的减振器,仿真得出的振动传递率符合优化目标要求,且冲击响应表现更好。5双钢轮压路机系统振动测试与分析。运用LMS专业振动测试设备和软件,对压路机振动系统进行实车振动测试与分析,验证并评价优化后减振系统的减振效果。
[Abstract]:In order to achieve good compaction effect, vibration wheel excitation is required to ensure the health of the driver and the service life of the parts and components of the roller. Also requires the roller cab and the car vibration as small as possible. Therefore, in order to ensure high working efficiency and give attention to both driver's health and machine life, it is necessary to seek suitable solutions for vibration control of roller vibration system and cab, so as to reduce the vibration transfer between the vibration wheel excitation source and the cab. In this paper, based on the practical engineering requirements of vibration reduction of double steel wheel vibratory roller, the main work and results are as follows: 1: 1 roller system dynamics modeling and analysis. Based on the dynamic model of roller system, the implicit mathematical relationship between cab vibration transfer rate and vibration absorber stiffness and damping is established by using Matlab. Furthermore, by calculating the variable parameters of the cab shock absorber, the influence of the stiffness and damping of the cab shock absorber on the vibration transfer rate from the upper frame to the cab is analyzed. Provide theoretical basis for parameter optimization of shock absorber. 2. Optimize parameters of cab shock absorber. The lowest vibration transfer rate from the upper frame to the cab is taken as the objective function of the optimization, and the stiffness and damping parameters of the vibration absorber other than the cab damper are known as the constraint conditions. Isight and Matlab are used to optimize the stiffness and damping coefficient of cab shock absorber. Through optimization calculation and analysis, the better parameters of shock absorber are obtained. The optimization results show that in order to make the vibration transfer rate lowest, the stiffness of the shock absorber should be as small as possible, the damping of the front damper should be as small as possible, and the damping of the latter should be as large as possible. 3. The development of the new type friction damping rubber shock absorber. According to the parameters of the vibration absorber obtained after parameter optimization, combined with the actual working conditions and installation requirements of the cab of the roller, a new type of friction damping rubber shock absorber was developed and designed. The dynamic simulation analysis of roller vibration system was carried out by using Harmony software. By using the dynamic analysis software Harmony developed by the company, the vibration absorption effect of the original and the new type of vibration absorber in the cab of the roller is simulated and analyzed. The results show that the optimized vibration absorber is used. The vibration transfer rate obtained by simulation meets the requirements of the optimization target, and the impact response is better than that of the vibration test and analysis of the 5. 5 double steel wheel roller system. The vibration test and analysis of the roller vibration system are carried out by using the vibration test equipment and software of LMS specialty, and the vibration absorption effect of the optimized vibration reduction system is verified and evaluated.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U415.521
【相似文献】
相关期刊论文 前10条
1 李建科;饶治国;;双钢轮压路机振动控制阀设计[J];工程机械;2007年10期
2 沈建军;冯忠绪;侯劲汝;张志峰;;双钢轮压路机行走液压系统参数的匹配[J];长安大学学报(自然科学版);2009年05期
3 黄宁波;;如何计算双钢轮压路机行走系统压力[J];建设机械技术与管理;2010年06期
4 顾海荣;王永奇;李昌明;;双钢轮压路机的最大制动减速度[J];筑路机械与施工机械化;2011年02期
5 丁丁;;中国市场上的十一款双钢轮压路机扫描[J];交通世界;2006年01期
6 张博;王政;;双钢轮压路机减速机应用探讨[J];建设机械技术与管理;2006年02期
7 陈平;杨宝成;李波;;双钢轮压路机散热器辅助冷却及清洗装置的应用[J];建设机械技术与管理;2011年11期
8 ;会员天地[J];今日工程机械;2005年02期
9 张红林;;CAT向用户提供全套道路建筑解决方案[J];今日工程机械;2008年10期
10 李天军 ,张健;卡特彼勒CB534DXW型沥青双钢轮压路机[J];工程机械与维修;2005年05期
相关博士学位论文 前1条
1 沈建军;双钢轮压路机动态特性分析及惯性负荷的抑制[D];长安大学;2009年
相关硕士学位论文 前2条
1 贺建军;高频双钢轮压路机驾驶室结构噪声分析与控制[D];湘潭大学;2015年
2 王鹏;双钢轮压路机动力学分析与驾驶室减振研究[D];上海交通大学;2015年
,本文编号:1823676
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1823676.html