当前位置:主页 > 科技论文 > 路桥论文 >

基于出租车轨迹数据的降雨对交通出行的影响研究

发布时间:2018-04-30 08:53

  本文选题:降雨 + 轨迹数据 ; 参考:《北京交通大学》2017年硕士论文


【摘要】:机动车保有量在过去的十几年中快速增长,使得城市交通系统的供需矛盾越来越突出,在特大城市中,交通拥堵正趋于常态。降雨天气使路面湿滑,降低路面附着系数,影响驾驶员的行车视线和车辆的操控性能,进一步降低人们的出行体验。研究降雨对交通出行的影响,为管理者制定科学有效的交通管理措施和应急预案提供一定的依据,对于城市居民的交通出行有一定的意义。出租车GPS系统的普及与发展,为我们提供了一种新的方法,可以更简单全面的获取交通信息。本文基于2012年11月份的气象数据和出租车轨迹数据,研究了降雨对交通出行的影响。主要分为三个部分:一是从轨迹数据中提取出行OD,研究了降雨对出行数量的影响以及对OD分布的影响,应用地图匹配的成果,将OD点落入网格化的路网中,以颜色表示密度,使得结果不仅直观,还可以根据路网将点还原到实际地图中;二是以北京市快速路、主干路和次干路为研究对象,运用配对样本T检验方法,研究了降雨对各等级道路路段平均速度和路段自由流速度的影响,同时运用轨迹点中包含的速度信息,研究了降雨对速度在空间分布上的影响;三是以北京西站、北京南站和北京站为研究对象,运用空间自相关分析,研究了降雨对大型交通枢纽周边拥堵情况的影响。本文的研究结果表明,降雨对出行OD数量的影响与降雨量以及当天是否为休息日有关;非降雨条件下,出行OD分布最密的区域集中在三环内,而降雨条件下出行OD分布最密的区域集中在各大交通枢纽,交通管理者应重点关注北京西站、北京南站、北京站、首都国际机场、五棵松地铁站和工人体育场北路与三里屯路交叉口这几个区域,通过出租车调度保障居民对出行的需求;降雨条件下,快速路的路段自由流速度的折减比例约为3%-3.5%,主干路的路段自由流速度的折减比例约为6.5%-7%;降雨对快速路的路段平均速度影响较大,随着降雨量的增大,路段速度在折减比例上也有一定增长,小雨条件下路段速度折减比例约为3%-3.5%,大雨条件下可达到7%-7.5%;降雨对环路中南北走向的道路的影响程度比对东西走向的道路的影响程度大,对二环、三环的影响程度比对四环的影响程度大,同时发现,机场高速、京石高速、蓝靛厂南路、西直门北大街等道路受降雨影响最大,在雨天易产生拥堵,出行上可避开这些道路;大型交通枢纽周边普遍为拥堵易发点,雨天应多关注枢纽周边道路交通的疏导。论文中提出的基于出租车轨迹数据研究降雨对交通出行影响的方法,具有一定的参考意义,在后续的研究中,可以在此基础上继续加以完善,进行更深入的研究。
[Abstract]:The rapid growth of vehicle ownership in the past ten years has made the contradiction between supply and demand of urban transportation system more and more prominent. In mega-cities, traffic congestion is tending to normal. Rain weather makes the road wet and slippery, reduces the adhesion coefficient of the road surface, affects the driver's driving line of sight and the control performance of the vehicle, and further reduces people's travel experience. The research on the effect of rainfall on traffic trip provides a certain basis for managers to formulate scientific and effective traffic management measures and emergency plans, and has a certain significance for urban residents' traffic travel. The popularization and development of taxi GPS system provide us with a new method to obtain traffic information more simply and comprehensively. Based on the meteorological data and taxi track data in November 2012, the effects of rainfall on traffic travel are studied in this paper. It is mainly divided into three parts: first, the travel ODs are extracted from the track data, and the effects of rainfall on the trip quantity and OD distribution are studied. The OD points fall into the gridded road network with the result of map matching, and the density is represented by color. The results are not only intuitionistic, but also can be restored to the actual map according to the road network. Secondly, taking Beijing Expressway, main Road and Subtrunk Road as the research object, the method of paired sample T test is used. The influence of rainfall on the average speed and free flow velocity of each grade road section is studied, and the influence of rainfall on the spatial distribution of velocity is studied by using the velocity information contained in the track point. The spatial autocorrelation analysis was used to study the influence of rainfall on the congestion around the large transportation hub in Beijing South Railway Station and Beijing Railway Station. The results show that the effect of rainfall on OD is related to the amount of rainfall and whether the day is a rest day. Under the condition of non-rainfall, the area with the densest OD distribution is concentrated in the three rings. However, the areas with the densest OD distribution under rainfall conditions are concentrated in major transport hubs. Traffic administrators should focus on Beijing West Railway Station, Beijing South Railway Station, Beijing Station, Capital International Airport, Wukesong subway station and the intersection of North Road and Sanlitun Road of the Workers' Stadium ensure the residents' demand for travel through taxi dispatching; under the conditions of rainfall, The reduction ratio of free flow velocity on expressway is about 3-3.5. the reduction ratio of free flow velocity on trunk road is about 6.5-7.The rainfall has a great influence on the average speed of expressway, and with the increase of rainfall, The speed of road sections has also increased to a certain extent. Under the condition of light rain, the reduction ratio of road speed is about 3% -3.5%, and under heavy rain conditions it can reach 7- 7.5%. The rain has a greater impact on the roads in the middle and north directions of the ring road than on the roads going east and west. The impact on the second and third rings is greater than that on the fourth ring. At the same time, it is found that roads such as Airport Expressway, Jingshi Expressway, Lanindigo South Road and Xizhimen North Street are the most affected by rainfall, and are prone to congestion on rainy days. Travel can avoid these roads; large transport hubs around the general congestion prone point, rainy days should pay more attention to the hub around the road traffic dredging. The method proposed in this paper to study the effect of rainfall on traffic trip based on taxi track data has some reference significance. In the following research, we can continue to improve it and carry out more in-depth research.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491

【参考文献】

相关期刊论文 前10条

1 刘张;王心迪;闫小勇;;面向复杂城市道路网络的GPS轨迹匹配算法[J];电子科技大学学报;2016年06期

2 张俊涛;武芳;张浩;;利用出租车轨迹数据挖掘城市居民出行特征[J];地理与地理信息科学;2015年06期

3 肖维丽;岳春生;奚玲;;基于高程的改进D-S证据理论地图匹配算法[J];计算机应用与软件;2015年07期

4 李小伟;;不同气象条件下交通规律分析[J];兰州工业学院学报;2014年04期

5 童晓君;向南平;朱定局;;基于出租车GPS数据的城市居民出行行为分析[J];电脑与电信;2012年Z1期

6 迟光华;;基于浮动车数据的出租车运行特点分析[J];交通世界(运输.车辆);2011年10期

7 姜桂艳;常安德;李琦;伊峰;;基于出租车GPS数据的路段平均速度估计模型[J];西南交通大学学报;2011年04期

8 方靖;荣建;祝站东;周建;;自由流状态的判别标准研究[J];中国公路学报;2010年S1期

9 苏岳龙;路鹭;姚丹亚;李志恒;张毅;;经典交通流模型在城市车路不均衡发展评价中的应用[J];公路交通科技;2010年11期

10 于德新;高学英;杨兆升;;基于GPS数据及车辆运行特性分析的单车路段行程时间估计[J];吉林大学学报(工学版);2010年04期

相关硕士学位论文 前10条

1 陈滨;基于GPS车辆轨迹数据的地图匹配算法研究[D];福建师范大学;2015年

2 钱颖;基于GIS的出租车辆GPS地图匹配研究[D];云南大学;2015年

3 许国淼;基于出租车GPS数据的道路交通运行状态判别[D];长安大学;2015年

4 孔蕙心;城市客流分布与出租车出行路线推荐算法的研究[D];北京邮电大学;2015年

5 翟菲菲;阴雨天气城市干道交通拥堵形成机理与疏导方法研究[D];重庆交通大学;2014年

6 乔国梁;不利天气条件下城市路段交通流特征参数研究[D];北京工业大学;2014年

7 刘军;基于浮动车数据的桥下积水导致的城市快速路交通拥堵规律研究[D];北京交通大学;2014年

8 刘乐敏;城市主干道短时交通流预测研究[D];北方工业大学;2013年

9 贺冬冬;基于出租车轨迹数据的短时交通流预测模型研究[D];大连海事大学;2013年

10 齐林;基于GPS数据的出租车交通运行特性研究及应用[D];哈尔滨工业大学;2013年



本文编号:1823905

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1823905.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户55e91***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com