考虑安全出口距离的社区应急疏散风险研究
本文选题:临界簇模型 + 安全出口距离 ; 参考:《兰州交通大学》2017年硕士论文
【摘要】:随着国家和地区社会生产力的发展、科学技术的进步以及产业结构的调整,城镇化速度日益加快,城市社区成为人们长期定居与生活的首选之地,据不完全统计中国约有50%的人口居住在城市社区内,社区的规划、建设以及构造成为保证社区居民生命与财产安全的重要因素。由于城市社区人口的密集性和突发事故下的感染性,使相关部门对社区的自我疏散能力和相对应急方案日益重视。对于社区大规模的人口与财产的转移行为,必须提前对社区路网中每条道路的疏散能力有一定的了解,同时要对突发事故下的疏散方向有一定的把握,因此,研究应急疏散与疏散风险问题至关重要。在目前关于应急疏散的研究中,Cova和Church提出的临界簇模型(CCM)是一个相当有发展前景的评价模型,应用在应急疏散中,将被实施救援措施的被困人员数结合当下疏散路径的容量需求,通过分割区域寻找路网中特定节点的最大风险集群来确定此节点的最极端、最不易布置应急工具的疏散条件,从而得出对整片区域道路网络的疏散风险评价。对于疏散过程中人员的行为模式和大规模的避难人群对疏散方向的盲目从众与随机性,我们利用理论分析和数学建模的方法,计算社区内每条道路的风险值,为突发事件下的应急疏散提供理论基础和技术支持。CCM引入参数少,其实质是在局部寻优的基础上进行全局优化的过程,是应急交通疏散风险评价的可靠模型。鉴于应急交通疏散问题在保障城市社区安全方面的重要作用,考虑到突发事件下疏散过程中社区安全出口位置和距离对疏散本身的重要性,本研究在CCM的基础上,通过考虑安全出口位置在不同距离范围对应急交通疏散的影响同时结合疏散中的组织人员对疏散方向的调整,分析了疏散风险与避难人群和安全出口之间距离的正相关关系,即避难人群越靠近安全出口其疏散风险越低,对CCM加以改进。顾及到现实中社区多方位的安全出口设置对居民疏散路径选择的影响,本文将引入单源多向最短距离算法,将距离的因素结合到了静态的模型中。这些改进拓展了CCM在区域应急交通疏散风险评价方面的应用。最后,在GIS的支持下,针对实际的社区道路交通网进行了简单的模型应用。GIS能对具有空间特征的信息进行可视化表达,同时,由于GIS应用中所用到的绘图软件MapInfo的计算功能对大数据信息失效,本文将采用VC++代替Map Basic实现拓扑建立后的方向调整与风险计算。得出的风险指数有助于相关管理部门的道路改造和应急交通指挥方案的制定,为针对社区多方位的避难场所实施不同营救方案提供科学依据。
[Abstract]:With the development of national and regional social productive forces, the progress of science and technology and the adjustment of industrial structure, the speed of urbanization is accelerating day by day, and urban communities have become the first choice for people to settle and live for a long time. According to incomplete statistics, about 50% of the population in China live in urban communities. The planning, construction and construction of communities have become an important factor to ensure the life and property safety of community residents. Due to the population density in urban communities and the infective nature of sudden accidents, the departments concerned pay more and more attention to the ability of self-evacuation of communities and the relative emergency plans. For the large-scale population and property transfer behavior in the community, we must have a certain understanding of the evacuation ability of each road in the community network ahead of time, and at the same time, we must have a certain assurance of the evacuation direction under the emergency, so, It is very important to study the problem of emergency evacuation and evacuation risk. In the current research on emergency evacuation, the critical cluster model proposed by Cova and Church is a promising evaluation model, which is used in emergency evacuation. The number of people trapped by the rescue measures is combined with the capacity demand of the current evacuation path, and the maximum risk cluster of the specific node in the road network can be found by dividing the area to determine the most extreme and the most difficult to arrange the evacuation conditions of the emergency tools. Thus, the evacuation risk assessment of the whole regional road network is obtained. For the behavior pattern of people in the evacuation process and the blind conformity and randomness of the evacuation direction, we use the method of theoretical analysis and mathematical modeling to calculate the risk value of every road in the community. To provide theoretical basis and technical support for emergency evacuation under emergency. CCM introduces less parameters, its essence is the process of global optimization on the basis of local optimization, which is a reliable model for risk assessment of emergency traffic evacuation. In view of the important role of emergency traffic evacuation in ensuring the safety of urban communities, considering the importance of community safety exit location and distance to evacuation itself in the process of emergency evacuation, this study is based on CCM. By considering the influence of safety exit location on emergency traffic evacuation in different distance range and combining with the adjustment of evacuation direction by organization personnel in evacuation, this paper analyzes the positive correlation between evacuation risk and the distance between asylum crowd and safety exit. In other words, the safer the safe exit, the lower the risk of evacuation. The CCM is improved. Considering the influence of community multi-directional safety exit setting on residents' evacuation path selection, this paper introduces the single source multi-directional shortest distance algorithm, and combines the distance factor into the static model. These improvements extend the application of CCM in the risk assessment of regional emergency traffic evacuation. Finally, with the support of GIS, a simple model for the actual community road traffic network is proposed, which can be used to visualize the information with spatial characteristics, and at the same time, Because the calculation function of MapInfo, a drawing software used in GIS application, is invalid to big data information, this paper uses VC instead of Map Basic to realize the direction adjustment and risk calculation after topology establishment. The obtained risk index is helpful to the road reconstruction and emergency traffic command plan of the relevant management departments, and provides scientific basis for implementing different rescue schemes for the multi-directional refuge sites in the community.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491
【参考文献】
相关期刊论文 前10条
1 陈绍宽;狄月;史荣丹;李静;王波;;地铁车站站台火灾影响分析与人员疏散研究[J];交通运输系统工程与信息;2017年01期
2 吴在栋;胡玉娟;张明锋;林广发;李乔玄;黄远鑫;;基于GIS的历史文化街区火灾风险评估——以福州市三坊七巷为例[J];灾害学;2016年04期
3 刘朝峰;郭小东;李岩峰;;基于智能优化的应急疏散道路自主评价模型[J];工业建筑;2016年06期
4 陈晨;修春亮;程林;;基于多中心性评价模型的大城市避灾绿地-交通网络-人口匹配性空间分异——以沈阳市中心城区为例[J];灾害学;2016年02期
5 邢志祥;丁芙蓉;唐亮;欧红香;郝永梅;;大型超市火灾人员疏散路径优化研究[J];安全与环境学报;2015年02期
6 胡映洁;吕斌;;城市社区空间应急疏散能力评价模型构建及其应用——以北京市交道口社区为例[J];地理与地理信息科学;2015年01期
7 胡玉玲;王飞跃;刘希未;;基于ACP方法的高层建筑火灾中人员疏散策略研究[J];自动化学报;2014年02期
8 赵宇宁;党会森;;人员密集场所应急疏散的风险评估模型研究[J];中国公共安全(学术版);2012年02期
9 任东风;徐爱功;;MapInfo中道路拓扑与最优路径的实现[J];测绘工程;2011年06期
10 胡成;姚晓晖;李伟;陈晋;;基于风险分析的公共场所人员安全容量确定方法[J];中国安全科学学报;2010年11期
相关博士学位论文 前1条
1 王静虹;非常规突发情况下大规模人群疏散的不确定性研究[D];中国科学技术大学;2013年
相关硕士学位论文 前4条
1 周成成;大型活动突发事件下交通疏散效率评价研究[D];西南交通大学;2014年
2 麦永耀;公共场所紧急疏散风险研究[D];华中科技大学;2013年
3 孙超;基于GIS与静态最短路径算法的校园紧急疏散系统开发[D];复旦大学;2013年
4 牛金山;基于物联网技术的应急疏散调度模型与算法研究[D];上海交通大学;2012年
,本文编号:1861101
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1861101.html