当前位置:主页 > 科技论文 > 路桥论文 >

双层公路钢桁梁桥车桥耦合振动研究

发布时间:2018-05-13 08:51

  本文选题:桥梁工程 + 双层公路钢桁梁桥 ; 参考:《长安大学》2015年博士论文


【摘要】:随着中国经济的增长与社会的发展,对交通基础设施建设的需求快速增加,与此同时,公路桥梁建设所受的限制条件也日趋多样化与复杂化,为此大量新型结构形式、新技术不断涌现。双层钢桁梁桥占地面积小,可以充分发挥桥位之利,通行能力大,能有效地缓解日益增长的交通压力,将会逐渐成为中国公路钢桥的一种发展方向与趋势。双层钢桥在力学行为上表现为空间性强,受力复杂,而且由于车道多,车流的随机性强,使得桥梁上下层各杆件的动力响应极为复杂,动力耦合效应也更为明显。在长期运营后,由于桥面平整度持续变差,车辆自身振动越加剧烈,将会使桥梁结构产生更大的动力响应,桥梁结构的安全性及使用寿命都将面临更为严峻地挑战,已成为桥梁设计与运营阶段必须加以考虑与解决的问题。本文在高等学校博士学科点专项科研基金项目——随机车流作用下双层公路钢桁桥车-桥耦合效应研究(20090205110002)的资助下,对双层公路钢桁梁桥的车桥耦合振动问题进行了研究,主要研究内容、研究方法与研究成果如下:(1)阐述了车桥耦合振动问题的产生、古典研究方法理论、发展以及国内外研究现状,在分析总结现有车桥耦合研究成果的基础上,根据车桥耦合振动问题的特点,制定了本文的研究方法与技术路线。(2)针对现有公路桥梁车桥耦合振动响应问题分析的复杂性,结合分离法原理与车辆动力学理论,提出了一种基于ANSYS平台的公路桥梁车桥耦合振动响应数值分析方法。将车辆模型与桥梁模型分别独立建于ANSYS软件环境中,利用约束方程实现任意时刻车轮与桥面接触点的位移协调关系(力的平衡关系由程序自动满足),基于ANSYS瞬态动力学求解功能,采用APDL编程实现车辆(车流)过桥的耦合动力时程响应分析。通过与相关文献算例结果的对比及实桥动载试验验证了本文方法的正确性与可靠性。该方法在任意载荷步处不需要迭代计算,避免了复杂程序设计,极大地提高了分析效率。(3)基于本文提出的车桥耦合振动数值算法,采用UIDL与APDL语言联合编程,依托ANSYS软件环境开发了公路桥梁车桥耦合振动响应分析模块VBCVA。该模块只需输入桥梁模型(桥面可以采用板单元或梁单元模拟)、车道信息(车道中心起始位置、车道方向等参数)与车辆(车流)信息(车辆类型、所属车道、车重及悬架刚度与阻尼等参数),即可计算出任意结构体系桥梁各位置的挠度冲击系数及其时程响应与各杆件的轴力、弯矩、扭矩等内力冲击系数及其时程变化响应。该模块采用图形用户界面(GUI)方式接受用户的输入,操作简便直观,便于工程人员掌握与应用。(4)以国内首座双层公路钢桁梁桥(三桁刚性悬索加劲钢桁梁桥)——东江大桥为工程背景,利用大型通用有限元软件ANSYS,采用空间梁单元Beam188(主桁杆件、纵梁和横梁)与板单元Shell63(桥面板)建立其三维有限元模型,对其动力特性(自振频率与振型)进行计算。对比实桥动载试验测试结果与有限元分析结果,两者相差较小,从而验证了有限元模型的可靠性,同时表明所建立的有限元模型能较好地反映实际桥梁的动力特性,有限元建模过程中的单元选取、边界施加和相关假定与实际较为相符,可应用其进行类似双层钢桥的有限元建模与计算分析工作,为进一步开展双层桥车桥耦合振动分析研究提供了有限元模型基准。(5)以东江大桥为工程依托,设计了一双层公路简支钢桁梁桥,应用已开发的车桥耦合振动分析模块VBCVA,对其车桥耦合振动响应进行了分析计算,系统地研究了单双层加载模式、车辆数量、车辆速度、车辆质量、桥面不平度等级与桥梁阻尼比等参数独立变化时,桥梁主梁各控制位置处杆件内力与节点挠度时程变化动力响应与冲击系数变化规律,为双层桥的设计提供一定的参考与借鉴。
[Abstract]:With the growth of China's economy and the development of the society, the demand for the construction of traffic infrastructure is increasing rapidly. At the same time, the restrictive conditions for the construction of road and bridge are becoming more and more diverse and complicated. Therefore, a large number of new structure forms and new technologies are constantly emerging. The floor area of the double deck steel truss bridge is small, and the bridge position can be fully exploited. Large capacity, can effectively alleviate the increasing traffic pressure, will gradually become a development direction and trend of the highway steel bridge in China. The double deck steel bridge has strong spatial characteristics and complex force in mechanical behavior, and because of the many lanes and the strong randomness of the traffic, the dynamic response of the members of the bridge and the lower part of the bridge is very complex and dynamic. The coupling effect is also more obvious. After the long operation, the bridge surface roughness continues to become worse and the vehicle itself vibrate more and more violently, which will make the bridge structure more dynamic response. The safety and service life of the bridge structure will face more severe challenges, which must be considered and solved in the design and operation stage of the bridge. In this paper, under the support of the study of the coupling effect of the double highway steel truss bridge with the coupling effect of the steel truss bridge (20090205110002) under the support of the study on the coupling effect of the double highway steel truss bridge under the action of random traffic, this paper studies the problem of the bridge coupling vibration of the double deck highway steel truss bridge. The main research methods and research results are as follows: (1) The generation of the bridge coupling vibration problem, the classical research method theory, the development and the current research status at home and abroad are expounded. Based on the analysis and summary of the existing research results of the existing vehicle bridge coupling, the research method and technical route of this paper are formulated according to the characteristics of the bridge coupling vibration. (2) the coupling vibration response of the existing highway bridges and bridges. The complexity of the problem analysis is combined with the principle of separation method and the theory of vehicle dynamics. A numerical analysis method for the coupling vibration response of highway bridge vehicle bridge based on ANSYS platform is proposed. The vehicle model and bridge model are independently built in the ANSYS software environment, and the displacement of the contact points of the wheel and the bridge surface at any time is realized by the constraint equations. The coordination relation (the balance relation of force is automatically satisfied by the program), based on the ANSYS transient dynamic solving function, the coupling dynamic time history response analysis of the vehicle (Che Liu) crossing bridge is realized by APDL programming. The correctness and reliability of the method are verified by the comparison of the related literature results and the real bridge dynamic load test. The load step does not need iterative calculation, avoids the complex program design and greatly improves the efficiency of analysis. (3) based on the proposed numerical algorithm of vehicle bridge coupling vibration, the combined programming of UIDL and APDL language and the ANSYS software environment are used to develop the coupling vibration response analysis module of highway bridge vehicle bridge VBCVA., which only needs to input the bridge beam model. Type (bridge deck can be simulated by plate element or beam element), lane information (Lane Center starting position, lane direction and other parameters) and vehicle (Che Liu) information (vehicle type, lane, vehicle weight and suspension stiffness and damping) can be calculated for the deflection impact coefficient, time history response and each pole of any structure of the bridge. The axial force, bending moment, torque and other internal force impact coefficient and its time history change response. The module adopts the graphical user interface (GUI) to accept the user's input, the operation is simple and intuitive, and it is convenient for engineers to master and apply. (4) the Dongjiang Bridge is the first double deck highway steel truss bridge (three truss rigid suspension cable stiffened steel truss bridge). Background, using the large general finite element software ANSYS, the three-dimensional finite element model of the space beam element Beam188 (main truss member, longitudinal beam and beam) and the plate element Shell63 (bridge panel) is established, and the dynamic characteristics of the bridge are calculated. The comparison between the test results of the dynamic load test and the finite element analysis of the real bridge is small, As a result, the reliability of the finite element model is verified. At the same time, it is shown that the finite element model can better reflect the dynamic characteristics of the actual bridge, the element selection in the finite element modeling process, the boundary application and the relevant assumptions are more consistent with the reality, and can be applied to the finite element modeling and calculation analysis of the similar double deck steel bridge. One step is to provide the finite element model reference for the study of the coupled vibration analysis of the double deck bridge. (5) based on the Dongjiang Bridge, a double deck highway simply supported steel truss bridge is designed. The coupled vibration response of the vehicle bridge coupled with the developed vehicle bridge coupling vibration analysis module VBCVA is applied to the analysis and calculation of the coupling vibration response of the bridge, and the single and double loading is systematically studied. When the model, vehicle number, vehicle speed, vehicle quality, bridge deck unevenness grade and Bridge damping ratio change independently, the dynamic response and impact coefficient change law of the internal force and the node deflection time range change at the control position of the bridge main beam are provided for a certain reference and reference for the design of the double deck bridge.

【学位授予单位】:长安大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U441.3

【参考文献】

相关期刊论文 前10条

1 阎贵平,夏禾,,陈英俊;列车与刚梁柔拱组合系桥系统的地震响应分析[J];北方交通大学学报;1994年01期

2 刘献栋,邓志党,高峰;公路路面不平度的数值模拟方法研究[J];北京航空航天大学学报;2003年09期

3 林梅,肖盛燮;桥梁车辆振动分析理论评述[J];重庆交通学院学报;1998年03期

4 张鹤;张治成;谢旭;龚仁明;;月牙形多拱肋钢管混凝土桁架拱桥动力冲击系数研究[J];工程力学;2008年07期

5 张士铎;;活载冲击系数还是动力系数[J];公路;1992年02期

6 施颖;田清勇;宋一凡;周新平;;基于ANSYS的公路桥梁车桥耦合振动响应数值分析方法[J];公路;2010年03期

7 郝超,强士中,马栋君;移动荷载作用下桥梁的振动控制[J];国外桥梁;1999年03期

8 刘永健;刘世忠;张俊光;邓淑飞;张国玺;;三桁钢桁梁桥横桥向内力调整方法及影响参数[J];广西大学学报(自然科学版);2011年01期

9 李小珍,强士中,沈锐利;高速列车-大跨度钢斜拉桥空间耦合振动响应研究[J];桥梁建设;1998年04期

10 高岩,张煅;高速铁路中小跨度桥梁竖、横向刚度限值及合理分布的研究[J];铁道建筑技术;2000年04期

相关博士学位论文 前3条

1 杨建荣;车—桥耦合作用下公路桥梁局部振动研究[D];同济大学;2008年

2 刘剑;新型组合钢桁桥可靠性分析及极限承载力评估[D];长安大学;2010年

3 蒋培文;公路大跨径连续体系桥梁车桥耦合振动研究[D];长安大学;2012年

相关硕士学位论文 前4条

1 米静;车桥耦合振动对双层钢桁桥的冲击作用研究[D];长安大学;2011年

2 孙韦;车辆荷载作用下连续梁桥的动态响应研究[D];长安大学;2009年

3 蒋树勤;双层公路钢桁梁桥极限承载力有限元分析[D];长安大学;2010年

4 王森;高速铁路简支梁桥车桥耦合振动仿真分析[D];石家庄铁道大学;2014年



本文编号:1882482

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1882482.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户57dad***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com