当前位置:主页 > 科技论文 > 路桥论文 >

基于有限元模型修正的全抗扭支承曲线梁桥爬移问题研究

发布时间:2018-05-25 08:15

  本文选题:有限元模型修正 + 全抗扭支承 ; 参考:《长安大学》2017年硕士论文


【摘要】:曲线梁桥因曲率半径的影响,处于弯扭耦合、内外侧支反力不均匀等复杂受力状态。加之相关设计规范的缺失,设计者对弯、直桥差异认识的不足以及经验设计的主观性,致使早期设计的曲线梁桥甚至新建结构不同程度出现主梁的爬移现象,且往往诱发桥梁墩身开裂、支座脱空、主梁倾覆等诸多病害,轻则影响美观、降低行车舒适性;重则出现塌桥等严重安全事故。本文依托潘家湾枢纽立交EK0+138.873匝道桥,考虑主梁爬移的动态累积过程,在全抗扭支承曲线梁桥的爬移分析中引入有限元动态修正的思想,从爬移对结构的影响分析出发,提出主梁、支座径向位移及剪切变形的合理控制标准,并在支承布置因素影响分析的基础上提出爬移的有效预防和缓减措施。本文主要包括以下研究内容及结论:(1)基于桥梁动静载试验,充分考虑静动态响应的“联合”作用,提出了基于动态系数的联合静动力有限元修正方法,并对依托工程初始梁格模型进行实例应用。修正结果表明,联合静动力的有限元修正技术可使各目标响应计算值与实测值的误差减少一半之多,且相较常规的联合静动力修正方法,本文方法的修正精度更高,是对联合静动力修正方法的完善,具有显著优势及推广应用价值。(2)基于修正后的有限元模型,分析主梁整体爬移及其连带的支座偏移、剪切变形现象对结构的影响。结果表明,主梁径向偏移表现为与纵向偏移对各响应值一致的影响规律,但影响程度则约为其几倍或几十倍,宜以径向效应控制设计。以剪切变形为代表的爬移连带病害使结构响应成倍甚至几十倍上百倍的增加,对边墩及其上支座的受力最为不利。以边墩处支座竖向不出现负反力及径向反力不超过支座摩阻力为控制目标,确定出主梁径向位移、支座偏位、剪切变形的单指标限值,并提出合理的控制建议。综合以上分析,进一步细化和完善爬移的产生及发展过程,给出详细的阐述。(3)利用修正后的有限元模型计算离心力和温度荷载对结构径向位移的贡献率,判定离心力和温度荷载为曲线梁桥爬移的主要外在因素。基于力法和虚功原理,推演出离心力及均匀变温作用下考虑剪力影响的任意截面径向位移解析公式,并用一算例验证了所推公式的正确性和有效性。进一步分析径向位移解析公式的特点,确定出爬移的关键影响因素为曲率半径、圆心角、截面特性及支承布置,爬移病害的预防应重点关注此四类因素的合理取值问题。(4)通过对支承布置因素变参分析,获得了支座间距、中间支座预偏心、支撑形式、支座形式对结构的影响规律,确定出每种因素下依托工程相对最优的设置方案,提出增大支座间距,墩梁固结或双墩布设,板式支座更换为盆式支座,墩梁间设置限位装置等有效的缓减措施,并给出每种措施详细的布设要求和建议。
[Abstract]:Because of the influence of curvature radius, the curved girder bridge is in the complicated state of bending and torsional coupling, the reaction force of the inner and outer side support is not uniform, and so on. In addition, the lack of relevant design specifications, the lack of understanding of the difference between curved and straight bridges, and the subjectivity of empirical design result in the creeping of the main beam in the early design of curved girder bridges and even in the newly built structures to varying degrees. And it often induces many diseases such as bridge pier cracking, pedestal detachment, main beam overturning and so on, which will affect the beauty of the bridge and reduce the driving comfort, while serious safety accidents such as collapse of the bridge will occur in the heavy part of the bridge. Based on the EK0 138.873 ramp bridge of Panjiawan junction, considering the dynamic accumulation process of the main beam climbing, this paper introduces the idea of finite element dynamic correction in the climbing analysis of the fully torsional supported curved girder bridge, and starts with the analysis of the influence of the climbing movement on the structure. The reasonable control standards of radial displacement and shear deformation of main beam and bearing are put forward. Based on the analysis of the influence of supporting arrangement factors, the effective prevention and mitigation measures of creep movement are put forward. This paper mainly includes the following research contents and conclusions: (1) based on the bridge static and dynamic load test, the "joint" effect of static and dynamic response is fully considered, and a joint static and dynamic finite element correction method based on dynamic coefficient is proposed. And the application of the initial beam lattice model of supporting engineering is carried out. The correction results show that the finite element method of combined static and dynamic forces can reduce the error between the calculated and measured values of each target response by half, and the accuracy of the proposed method is higher than that of the conventional combined static and dynamic correction method. On the basis of the modified finite element model, the influence of the whole climbing movement of the main beam and its associated bearing offset and shear deformation on the structure is analyzed. The results show that the radial migration of the main beam is consistent with the effect of longitudinal migration on each response value, but the influence degree is about several times or tens times of it, so the radial effect should be used to control the design. The climbing and associated diseases represented by shear deformation increase the response of the structure by many times or even tens of times, which is the most disadvantageous to the side pier and its upper support. Taking the vertical negative reaction force and the radial reaction force not exceeding the support friction at the side pier as the control objectives, the single index limit values of the radial displacement, the support offset and the shear deformation of the main beam are determined, and the reasonable control suggestions are put forward. By synthesizing the above analysis, the generation and development process of climbing movement are further refined and perfected, and the detailed explanation is given. The contribution rate of centrifugal force and temperature load to radial displacement of structure is calculated by using the modified finite element model. The centrifugal force and temperature load are the main external factors for the climb of curved girder bridge. Based on the force method and the principle of virtual work, the analytical formula of radial displacement of arbitrary cross section considering the influence of shear force under centrifugal force and uniform variable temperature is derived. An example is given to verify the correctness and validity of the formula. Further analyzing the characteristics of the analytical formula of radial displacement, it is determined that the key influencing factors are radius of curvature, angle of center of circle, characteristic of section and arrangement of support. The prevention of climbing and moving diseases should pay attention to the reasonable value of these four kinds of factors. (4) by analyzing the factors of supporting arrangement and changing parameters, the influence laws of support spacing, intermediate bearing pre-eccentricity, support form and bearing form on structure are obtained. The relative optimal setting scheme of supporting project under each kind of factors is determined, and effective mitigation measures such as increasing support spacing, consolidation of pier beam or arrangement of double piers, replacement of plate support with basin support, setting of limit device between piers and beams, etc., are put forward. Detailed layout requirements and suggestions for each measure are also given.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U441

【参考文献】

相关期刊论文 前10条

1 骆勇鹏;黄方林;廖明皓;鲁四平;;基于逐步回归分析的既有铁路钢桁桥有限元模型修正[J];铁道科学与工程学报;2015年05期

2 万华平;任伟新;王宁波;;高斯过程模型的全局灵敏度分析的参数选择及采样方法[J];振动工程学报;2015年05期

3 焦驰宇;刘陆宇;龙佩恒;侯苏伟;;城市曲线梁桥爬移现象及解决措施研究[J];工程力学;2015年S1期

4 宋力勋;;曲线梁桥的横向效应研究与径向约束体系的比选[J];中外公路;2015年01期

5 魏锦辉;任伟新;;基于响应面方法的桥梁静动力有限元模型修正[J];公路交通科技;2015年02期

6 张博兰;;支座预偏心设置对曲线梁桥受力影响分析[J];福建建筑;2015年01期

7 梁鹏;李斌;王秀兰;王晓光;吴向男;马旭明;;基于桥梁健康监测的有限元模型修正研究现状与发展趋势[J];长安大学学报(自然科学版);2014年04期

8 张征文;李永庆;;基于荷载试验数据修正桥梁结构有限元计算模型的研究[J];西安建筑科技大学学报(自然科学版);2014年02期

9 朱寅虎;毛毳;;移动荷载作用下曲线桥侧移的有限元分析[J];天津城建大学学报;2014年01期

10 李学治;;城市立交桥中单支墩曲线匝道桥的整体失稳及其横向爬移问题分析与对策[J];企业导报;2014年02期

相关会议论文 前2条

1 荣志娟;王学明;严立新;吕宝华;张陵;;基于统计分析的钢管塔环板节点有限元模型修正[A];第21届全国结构工程学术会议论文集第Ⅱ册[C];2012年

2 刘小川;张凌霞;牟让科;;基于灵敏度分析和响应面方法的有限元模型修正[A];中国航空结构动力学专业组第十六届学术交流会论文集[C];2008年

相关博士学位论文 前3条

1 唐盛华;混凝土桥梁结构损伤识别试验研究[D];湖南大学;2013年

2 方圣恩;基于有限元模型修正的结构损伤识别方法研究[D];中南大学;2010年

3 袁爱民;基于灵敏度分析的有限元模型修正技术若干关键问题研究[D];东南大学;2006年

相关硕士学位论文 前10条

1 阮紫彦;基于长期健康监测数据的某S形线梁桥径向偏位研究[D];华南理工大学;2016年

2 赵崇基;基于模型修正的混凝土连续梁桥运营安全性能评估的试验研究[D];太原理工大学;2016年

3 奚南;基于横竖向车桥耦合作用下弯梁桥的横向力研究[D];长安大学;2016年

4 庞振宇;城市预应力混凝土曲线梁桥温度场及温度效应研究[D];南京工业大学;2015年

5 李琦;孤山川11号桥纠偏技术[D];长安大学;2015年

6 赵成功;桥梁纠偏技术及其应用[D];长安大学;2015年

7 张天宇;混凝土连续弯梁桥横向爬移模型研究[D];长安大学;2015年

8 林丽娟;曲线梁桥的横向“爬移”分析[D];郑州大学;2015年

9 平然;曲线梁桥爬移问题的研究[D];北京建筑大学;2014年

10 段晓伟;混凝土曲线连续箱梁桥多因素作用横向位移分析[D];长安大学;2014年



本文编号:1932737

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1932737.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6a332***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com