当前位置:主页 > 科技论文 > 路桥论文 >

随机森林算法在交通状态判别中的应用

发布时间:2018-06-13 11:18

  本文选题:随机森林算法 + 交通状态判别 ; 参考:《实验技术与管理》2017年04期


【摘要】:随机森林算法随机选择多个决策树构成森林,算法分类结果由这些决策树投票得到,在运算量没有显著增加的前提下提高了预测精度,是一种目前比较流行的组合分类器算法。随机森林算法不仅可以用来做分类,也可用来做回归预测,是机器学习、计算机视觉等领域内应用极为广泛的一个算法。该文将随机森林分类算法用于交通状态判别,利用实测数据进行模型训练和验证,并用袋外数据计算判别正确率,实验结果表明该方法具有可行性,为交通状态判别提供了一种新思路。
[Abstract]:The random forest algorithm selects several decision trees randomly to form the forest, and the classification results are obtained by voting from these decision trees. The prediction accuracy is improved without significant increase in computation. It is a popular combinatorial classifier algorithm at present. Stochastic forest algorithm can be used not only for classification, but also for regression prediction. It is a widely used algorithm in machine learning, computer vision and other fields. In this paper, the stochastic forest classification algorithm is applied to traffic condition discrimination, the model is trained and verified by the measured data, and the correct rate of discrimination is calculated with the data outside the bag. The experimental results show that this method is feasible. It provides a new way for traffic condition discrimination.
【作者单位】: 青岛科技大学自动化与电子工程学院;
【基金】:山东省自然科学基金项目(ZR2014FL018) 青岛科技大学博士启动基金项目(010022530)
【分类号】:U491

【相似文献】

相关期刊论文 前10条

1 王丽婷;丁晓青;方驰;;基于随机森林的人脸关键点精确定位方法[J];清华大学学报(自然科学版);2009年04期

2 康有;陈元芳;顾圣华;姚欣明;黄琴;汤艳平;;基于随机森林的区域水资源可持续利用评价[J];水电能源科学;2014年03期

3 邱一卉;林成德;;基于随机森林方法的异常样本检测方法[J];福建工程学院学报;2007年04期

4 马昕;王雪;杨洋;;基于随机森林算法的大学生异动情况的预测[J];江苏科技大学学报(自然科学版);2012年01期

5 刘美菊;刘冬;刘剑;;随机森林在群控电梯交通模式识别中的应用[J];机械设计与制造;2013年04期

6 姚登举;杨静;詹晓娟;;基于随机森林的特征选择算法[J];吉林大学学报(工学版);2014年01期

7 张晔;杨国田;;基于随机森林的数据融合架空输电线路铁塔损伤识别[J];黑龙江科技信息;2014年20期

8 吕淑婷;张启敏;;一类带Poisson跳的随机森林发展系统数值解的稳定性[J];兰州理工大学学报;2012年03期

9 陈海利;孙志伟;庞龙;;基于随机森林的文本分类研究[J];科技创新与应用;2014年02期

10 庄进发;罗键;彭彦卿;黄春庆;吴长庆;;基于改进随机森林的故障诊断方法研究[J];计算机集成制造系统;2009年04期

相关会议论文 前7条

1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年

2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年

3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年

4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年

5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年

6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年

7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年

相关博士学位论文 前5条

1 张乾;基于随机森林的视觉数据分类关键技术研究[D];华南理工大学;2016年

2 曹正凤;随机森林算法优化研究[D];首都经济贸易大学;2014年

3 雷震;随机森林及其在遥感影像处理中应用研究[D];上海交通大学;2012年

4 岳明;基于随机森林和规则集成法的酒类市场预测与发展战略[D];天津大学;2008年

5 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年

相关硕士学位论文 前10条

1 钱维;药品不良反应监测中随机森林方法的建立与实现[D];第二军医大学;2012年

2 韩燕龙;基于随机森林的指数化投资组合构建研究[D];华南理工大学;2015年

3 贺捷;随机森林在文本分类中的应用[D];华南理工大学;2015年

4 张文婷;交通环境下基于改进霍夫森林的目标检测与跟踪[D];华南理工大学;2015年

5 李强;基于多视角特征融合与随机森林的蛋白质结晶预测[D];南京理工大学;2015年

6 朱玟谦;一种收敛性随机森林在人脸检测中的应用研究[D];武汉理工大学;2015年

7 肖宇;基于序列图像的手势检测与识别算法研究[D];电子科技大学;2014年

8 李慧;一种改进的随机森林并行分类方法在运营商大数据的应用[D];电子科技大学;2015年

9 赵亚红;面向多类标分类的随机森林算法研究[D];哈尔滨工业大学;2014年

10 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年



本文编号:2013853

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2013853.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d0575***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com