公路隧道钻爆法施工粉尘运移规律及控制技术研究
发布时间:2018-06-25 15:16
本文选题:公路隧道 + 钻爆法 ; 参考:《北京科技大学》2015年博士论文
【摘要】:公路隧道钻爆法施工是粉尘危害最严重的作业之一,其各工序产生的原始粉尘浓度远远超过了国家职业卫生标准的要求,严重影响了作业人员的职业健康与安全。因此,本文针对当前公路隧道钻爆法施工粉尘浓度高的问题,以京昆高速公路辛庄隧道为例,采用理论分析、现场数据测定、Fluent数值模拟与实验室试验相结合的方法对其进行了研究。 分析了钻爆法施工隧道内粉尘的产生机理,针对粉尘在气流中的受力种类,根据物理守恒三大定律,推导出了粉尘在隧道内的运动方程,并研究了其求解的数学模型。 根据GBZ/T192.1-2007及相关文献,设计了现场粉尘测定方案,并对辛庄隧道风流及钻孔、出渣运输、喷射混凝土等工序粉尘浓度进行了现场测定分析;根据相似原理,结合气固两相流运动方程,导出了粉尘运动的相似准则数,并进行简化从而建立了隧道相似模型,研究了掌子面附近风流及粉尘浓度分布情况;基于气固两相流理论,结合现场与相似模拟数据,采用FLUENT6.2建立了隧道的几何模型并划分了网格,设定了模拟参数及边界条件,对隧道内流场及各工序粉尘的运移规律进行了数值模拟研究,模拟结果与实测数据、相似实验数据吻合程度较好;基于现场实际条件,提出了水炮泥降尘剂与气水雾化系统综合降尘的技术思路。 在分析气水雾化机理的基础上,结合隧道内产尘特点,选取了新型气水雾化喷嘴进行雾化效果试验,确定了气水雾化系统的合理工艺参数及现场布置方案。通过溶液表面张力测定、粉末正向渗透法以及降氮氧化物毒性的测定,确定了水炮泥降尘剂的配方,即:基料的质量浓度0.3%,表面活性剂的质量浓度0.5%,两种添加剂的质量浓度分别为0.1%、0.03%:结合现场实际情况,确定了现场的具体制作和填装方案。 将两种降尘措施应用于现场实际,通过现场测试结果表明:作业环境得到了明显的改善,各测点粉尘浓度大大降低了,其中,各工序全尘平均降尘效率达48%-80%,呼吸性粉尘平均降尘效率达69%-74%,比现有的通风除尘措施有了较大的提高。
[Abstract]:The construction of highway tunnel drilling and blasting is one of the most serious dust hazards. The original dust concentration produced by each working procedure far exceeds the requirements of the national occupational health standards and seriously affects the occupational health and safety of the workers. Therefore, aiming at the problem of high dust concentration in the construction of highway tunnel by drilling and blasting method, this paper takes the Xinzhuang tunnel of Beijing-Kunming Expressway as an example, and adopts theoretical analysis. The fluent numerical simulation and laboratory test were used to study the field data measurement. The mechanism of dust generation in tunnel by drilling and blasting method is analyzed. According to the three laws of physical conservation, the equation of dust movement in tunnel is deduced, and the mathematical model of its solution is studied. According to GBZ / T192.1-2007 and related documents, the paper designs a scheme for the determination of dust in the field, and analyzes the dust concentration in the working processes of Xinzhuang tunnel, such as air flow and drilling, slag transportation, shotcrete, etc., according to the principle of similarity, Combined with the equation of motion of gas-solid two-phase flow, the similarity criterion number of dust movement is derived, and the similar model of tunnel is established, and the distribution of wind flow and dust concentration near the palm is studied, based on the theory of gas-solid two-phase flow, Combined with the field and similar simulation data, the geometric model of tunnel was established by fluent 6.2, and the simulation parameters and boundary conditions were set up. The simulation results are in good agreement with the measured data, and based on the field conditions, the technical idea of integrated dust control of water gun mud dedusting agent and gas-water atomization system is put forward. Based on the analysis of the mechanism of gas-water atomization and combined with the characteristics of dust production in the tunnel, a new type of atomizing nozzle was selected to test the atomization effect, and the reasonable technological parameters and site layout of the air-water atomizing system were determined. The formula of water gun mud dedusting agent was determined by measuring the surface tension of solution, the method of powder forward permeation and the determination of the toxicity of nitrogen oxide. That is: the mass concentration of the base material is 0.3, the mass concentration of the surfactant is 0.5 and the mass concentration of the two additives is 0.1 / 0.03 respectively. The results of field test show that the working environment has been obviously improved, and the dust concentration at each measuring point has been greatly reduced, among which, The average dedusting efficiency of every working procedure is 48-80 and that of breathing dust is 69-74, which is much higher than that of the existing ventilation and dust removal measures.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U455.41
【参考文献】
相关期刊论文 前10条
1 金龙哲;刘结友;于猛;;高效水炮泥的降尘机理及应用研究[J];北京科技大学学报;2007年11期
2 温玉辉;谢永利;李宁军;;特长公路隧道相邻洞口流态三维CFD仿真分析[J];重庆交通学院学报;2006年05期
3 杨建国;;湿式喷凝土工法速凝剂的应用[J];铁道科学与工程学报;2008年03期
4 徐景德,周心权;通风除尘和风流速度关系的试验研究[J];矿业安全与环保;1999年04期
5 王国超,,傅培舫,叶汝陵;巷道中粉尘弥散的实验研究[J];煤炭工程师;1994年06期
6 陶坤;李小龙;李泉;;湿喷混凝土在公路隧道初期支护中的施工技术与质量分析[J];公路;2011年12期
7 张开顺;罗昌宏;吴宁;;湿喷防水混凝土在隧道防水中的施工技术[J];公路交通科技;2006年03期
8 陶坤;;压入式通风在隧道施工中的动态设计与应用分析[J];公路交通科技(应用技术版);2008年06期
9 孔祥金;;我国隧道、地下工程、城市轨道交通发展近况[J];公路隧道;2005年02期
10 张恒;杨家松;高辉;陈寿根;;锦屏隧道施工通风研究[J];广西水利水电;2008年05期
本文编号:2066460
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2066460.html