当前位置:主页 > 科技论文 > 路桥论文 >

事件状态下快速路行程时间预测研究

发布时间:2018-07-28 13:19
【摘要】:行程时间作为出行者最关注的交通参数之一,对于安排每日工作、生活计划具有重要意义。然而由于交通事件的不确定性、不可预知性,特别是在交通量日益增长的城市快速路上,轻微的交通事件就有可能引发大面积的行车延误,给居民生活工作带来较大不便。因此,通过研究事件状态下交通流特点、建立事件状态下快速路行程时间预测模型;构建行程时间预测、信息发布、交通诱导智能交通运输系统子系统对于降低出行延误具有重要意义。首先,文章从事件状态下快速路通行能力、交通流排队消散统计特性以及行程时间预测方法三个方面叙述了事件状态下快速路行程时间预测的基本理论与方法。其次,通过分析当前行程时间预测方法的优缺点,从事件状态下交通流统计特性出发,建立了波动理论-BP神经网络事件状态下快速路行程时间预测组合模型。最后,以北京市四环路交通事件历史统计资料为依据,根据路段上各环形线圈之间的行程时间计算路段实际行程时间;将事件发生时刻前后各36小时的交通量、地点车速、各事件阶段统计时间代入预测模型计算路段预测行程时间。利用绝对平均误差、均方根误差、平均绝对百分误差三个指标进行模型评价,结果表明所建立的组合预测模型较单一预测模型有较高的预测精度。将事件状态下行程时间预测模型应用在智能交通运输系统中,构建了智能交通运输系统事件状态下快速路行程时间预测子系统基本框架。
[Abstract]:As one of the most concerned traffic parameters, travel time is of great significance for daily work and life planning. However, due to the uncertainty and unpredictability of traffic events, especially on the urban expressway with increasing traffic volume, minor traffic events may lead to a large area of traffic delays and bring great inconvenience to the residents' life and work. Therefore, by studying the characteristics of traffic flow in the event state, establishing the expressway travel time prediction model under the event state, constructing the travel time prediction, releasing the information, The traffic guidance intelligent transportation system subsystem is very important to reduce travel delay. Firstly, this paper describes the basic theory and method of expressway travel time prediction in event state from three aspects: the capacity of expressway under event state, the statistical characteristics of traffic flow queuing dissipation and the method of travel time prediction. Secondly, by analyzing the advantages and disadvantages of the current travel time prediction methods, and starting from the statistical characteristics of traffic flow under the event state, a combined model for the prediction of the expressway travel time under the event state based on the fluctuation theory and BP neural network is established. Finally, based on the historical statistical data of traffic events on the fourth Ring Road in Beijing, the actual travel time of the road sections is calculated according to the travel time between the loops on the road sections. The traffic volume and the local speed of 36 hours before and after the incident are calculated. The statistical time of each event stage is substituted into the prediction model to calculate the predicted travel time of road sections. The model is evaluated by using three indexes: absolute mean error, root mean square error and average absolute percent error. The results show that the combined prediction model has higher prediction accuracy than the single prediction model. The travel time prediction model in the event state is applied to the intelligent transportation system, and the basic framework of the expressway travel time prediction subsystem in the event state of the intelligent transportation system is constructed.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491

【参考文献】

相关期刊论文 前10条

1 韦伟;毛保华;陈绍宽;许得杰;;基于当期事件识别的拥堵传播特征研究[J];交通运输系统工程与信息;2016年04期

2 李昂;李硕;李玲;;城市道路路段行程时间计算模型研究[J];公路工程;2016年03期

3 罗枢政;;高德地图实时路况信息上线交通诱导屏[J];计算机与网络;2016年11期

4 向怀坤;;基于交通波理论的道路阻抗函数模型研究[J];深圳职业技术学院学报;2016年01期

5 王杨松;孙洁;;基于离散选择的动态堵塞模型研究[J];宁波工程学院学报;2015年04期

6 阎莹;王晓飞;;灾变事件下高速公路管理单元的行程时间研究[J];华南理工大学学报(自然科学版);2015年12期

7 丁宏飞;李演洪;刘博;秦政;;基于BP神经网络与SVM的快速路行程时间组合预测研究[J];计算机应用研究;2016年10期

8 刘跃;;我国高速公路交通流状态监管与控制技术研究[J];无线互联科技;2015年19期

9 唐少虎;刘小明;陈兆盟;张金金;;基于计算实验的城市道路行程时间预测与建模[J];自动化学报;2015年08期

10 刘星良;李孟晖;熊子瑜;;基于蓝牙的道路行程时间检测设备设计及测试[J];交通信息与安全;2014年02期

相关会议论文 前1条

1 张郭艳;宋业利;;地铁施工对城市道路通行能力的影响分析[A];规划创新:2010中国城市规划年会论文集[C];2010年

相关博士学位论文 前3条

1 张扬;城市路网交通预测模型研究及应用[D];上海交通大学;2009年

2 杜长海;计算智能及其在城市交通诱导系统中的应用研究[D];重庆大学;2009年

3 王晓飞;灾变条件下通道路网运营安全管理及应急处置研究[D];同济大学;2008年

相关硕士学位论文 前2条

1 魏玉晓;城市道路交通控制与交通诱导协调优化研究[D];西南交通大学;2010年

2 熊慧;高速公路交通控制与交通诱导技术的研究[D];西南交通大学;2010年



本文编号:2150281

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2150281.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e36c5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com