城市公共交通网络演化研究
[Abstract]:The urban public transport network has gradually developed into a complex network system, which is the core of the bus and the rail transit network. In this paper, based on the methods and ideas of the complex network theory, the system dynamics and the mean field theory are quoted. The evolution mechanism of urban public transportation network is deeply discussed, and the development and development of public transportation are combined with the construction of public transportation. The characteristics of the new network evolution model are constructed, and the following beneficial attempts have been made in the in-depth study of urban public transport network evolution. First, from the perspective of network morphology, the evolution of urban public transport network is divided into three stages of development: the backbone network, interlaced network and mixed network. The influence factors of urban public transport network evolution are analyzed, including four aspects: public transportation demand, public transport supply, traffic diversity development and network internal optimization. Through the study of the causal relationship between different factors, the negative feedback chain of public transportation demand and economy is obtained, and public transportation supply and economy are provided. The evolution model of urban public transport network evolution based on different influence factors with time is constructed. After that, the ideas and methods of constructing the classic WS small world model and BA model are used, and the node connection domain and the inter node mix are put forward in combination with the characteristics of the actual evolution process of urban public traffic network. In conjunction with two evolutionary mechanisms, a network evolution model based on the hybrid connection domain is constructed. The expression of degree distribution under the network evolution model is derived by applying the system dynamics and the mean field theory, and the analysis is further analyzed with Pajek. With the increasing network scale, the network degree distribution curve evolves gradually from power law function to the network evolution model. The exponential function shows that the network is gradually evolving from internal structure imbalance to network steady state, and the steady state network is further expounded and analyzed. Finally, the public transport network of three cities in Shanghai, Guangzhou and Hongkong are studied. The bus network, the network degree distribution curve of the rail transit network are first studied, and nearly ten are combined. The change trend of the number of public transport network lines and the average degree of the rail transit network has been found in the continuous expansion of the public transport network, and the internal knot optimization is also carried out. Based on the actual transfer relationship between the bus and the rail transit network, the connection network structure model is put forward, and the concept of the connection network strange degree and its computing side are defined. On the basis of empirical study, the curve of singularity distribution shows exponential distribution, which reflects the randomness of the evolution of the connection network. By comparing and analyzing the results of the empirical data and model fitting, the actual process of the gradual evolution of the connection network to the steady state network is expounded, which provides a rationalization proposal for the development of urban public transport network planning.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.17
【参考文献】
相关期刊论文 前10条
1 蒋阳升;罗孝羚;刘媛;姚志洪;陈标;;公交线网空间可达性优化研究[J];公路交通科技;2016年04期
2 熊巧;;考虑节点间不同连通性要求的公路交通网布局优化模型研究[J];计算机应用研究;2015年11期
3 许晴;祖正虎;徐致靖;张文斗;郑涛;;330个中国城市P空间下公交复杂网络实证研究[J];交通运输系统工程与信息;2013年01期
4 于海宁;张宏莉;余翔湛;;交通网络拓扑结构及特性研究综述[J];华中科技大学学报(自然科学版);2012年S1期
5 张铁岩;宋瑞;郑锂;徐瑜婷;;基于复杂网络理论的国内地铁网络特性分析[J];交通信息与安全;2012年05期
6 张兰华;杜海涛;赵鑫;曹宸;唐一源;;基于复杂网络的公交网络特性研究[J];机械设计与制造;2012年06期
7 叶彭姚;;城市道路网拓扑结构的复杂网络特性研究[J];交通运输工程与信息学报;2012年01期
8 姜志宏;王晖;高超;;一种基于随机行走和策略连接的网络演化模型[J];物理学报;2011年05期
9 汪涛;吴琳丽;;基于复杂网络的城市公交网络抗毁性分析[J];计算机应用研究;2010年11期
10 刘锐;严宝杰;黄志鹏;;公共交通的局域世界演化网络模型[J];公路交通科技;2010年03期
相关会议论文 前1条
1 李平;汪秉宏;熊星;乔忠亮;袁刚强;孙兴;杨伟松;;城市公交系统的网络效率与网络拓扑特性研究[A];2006全国复杂网络学术会议论文集[C];2006年
相关博士学位论文 前8条
1 李子木;城市轨道交通网络发展演化的复杂性研究[D];东南大学;2016年
2 丁卓;基于复杂网络的智慧城市公共交通网络研究[D];华南理工大学;2015年
3 田庆飞;基于复杂网络理论的城市公交网络生成与优化研究[D];吉林大学;2013年
4 李丽萍;区域物流系统动力学模型构建与应用研究[D];东北林业大学;2012年
5 郭龙;复杂网络上自组织临界现象及Opinion演化动力学研究[D];华中师范大学;2010年
6 周海平;复杂网络的演化模型及传播动力学研究[D];贵州大学;2009年
7 吴建军;城市交通网络拓扑结构复杂性研究[D];北京交通大学;2008年
8 陈永洲;城市公交巴士复杂网络的实证与模拟研究[D];南京航空航天大学;2007年
相关硕士学位论文 前6条
1 韩晓冉;中国重要城市轨道交通系统网络结构特性演化研究[D];北京交通大学;2015年
2 罗金龙;城市轨道交通网络复杂性及演化分析[D];北京交通大学;2014年
3 徐光明;有向局域世界模型的构建与应用研究[D];山东师范大学;2011年
4 张君超;基于复杂网络的城市公交网络特性分析与演化研究[D];西南交通大学;2010年
5 汪涛;城市公交网络的拓扑结构和演化模型研究[D];南京航空航天大学;2009年
6 朱大智;基于度分布的复杂网络拓扑结构建模研究[D];国防科学技术大学;2006年
,本文编号:2162093
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2162093.html