基于基因表达式算法的路面材料性能预测
[Abstract]:As an important basis for pavement structure design and construction, pavement material performance research has always been a hot topic in the direction of road engineering. In this paper, the dynamic modulus of asphalt mixture, dynamic modulus of recycled asphalt mixture, autogenous shrinkage of concrete and other pavement material performance prediction models are studied by genetic expression programming algorithm. The analysis results have important practical significance for road engineering, structural engineering and other fields. Firstly, this paper systematically analyzes the research status of dynamic modulus of asphalt mixture, dynamic modulus of recycled asphalt mixture and autogenous shrinkage of concrete. The main research contents can be summarized as follows: (1) The genetic expression programming algorithm is used to predict the dynamic modulus of asphalt mixture, and the eight main factors affecting the dynamic modulus of asphalt mixture are: the void fraction (aV) of asphalt mixture. Available bitumen content (b effV), bitumen viscosity (_), loading frequency (f), cumulative residual mass fraction (34?, 38?, 4?) of bitumen mixture after 19.0, 9.5, 4.75 mm sieve, and the throughput of bitumen mixture on 0.075 mm sieve hole (200?) constitute the main parameters of predicting the dynamic modulus model of bitumen mixture. Through eight discrete parameters A prediction model of dynamic modulus of asphalt mixture based on genetic expression programming algorithm is established.The results show that the predicted values of dynamic modulus obtained by the prediction model are highly correlated with the measured values.The prediction model is compared with Witczak 1999 function model,Korea dynamic modulus prediction model and artificial neural network model. The results show that the genetic expression programming algorithm is simple and reliable in predicting the dynamic modulus of asphalt mixture. (2) Using the genetic expression programming algorithm to study the dynamic modulus prediction model of recycled asphalt mixture. Eight influencing factors in the prediction model are added to the mixture ratio of recycled asphalt pavement mixture as nine input parameters of the dynamic modulus of recycled asphalt mixture. The results show that the predicted value of the predicted model has a good fit with the measured value, and it has a certain reference value for the study of the dynamic modulus of recycled asphalt mixture. (3) Concrete. The autogenous shrinkage test was carried out to analyze the effect of different water cement ratio and silica fume content on the autogenous shrinkage of concrete.The relationship between autogenous shrinkage of concrete and its main influencing factors (water cement ratio, mineral admixture, aggregate content, cement paste content, superplasticizer, curing temperature and curing age) was studied by genetic expression programming. The results show that the prediction model of concrete autogenous shrinkage based on genetic expression programming meets the requirements of engineering design in precision and has certain guidance for concrete structure design. Finally, on the basis of a comprehensive summary of the full-text work, some suggestions and prospects for further research are put forward.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U414
【参考文献】
相关期刊论文 前10条
1 耿立涛;杨新龙;任瑞波;王立志;;稳定型橡胶改性沥青混合料动态模量预估[J];建筑材料学报;2013年04期
2 乔志勇;庄江涛;;回收沥青混合料掺量对再生沥青混合料性能的影响[J];石油沥青;2013年03期
3 马士杰;付建村;韦金城;高雪池;;大粒径透水性沥青混合料动态模量预估模型研究[J];公路交通科技;2010年05期
4 韦金城;崔世萍;胡家波;;沥青混合料动态模量试验研究[J];建筑材料学报;2008年06期
5 马翔;倪富健;陈荣生;;沥青混合料动态模量试验及模型预估[J];中国公路学报;2008年03期
6 李进;张玉贞;;工厂热拌再生沥青混凝土技术综述[J];石油沥青;2008年01期
7 赵延庆;薛成;黄荣华;;沥青混合料抗压回弹模量与动态模量比较分析[J];武汉理工大学学报;2007年12期
8 胡霞光;李德超;田莉;;沥青混合料动态模量研究进展[J];中外公路;2007年01期
9 颜彬,徐世法,高金歧,高原;沥青再生技术的现状与发展[J];北京建筑工程学院学报;2005年01期
10 杨平,聂忆华,查旭东;旧沥青路面材料再生利用调查和评价[J];中外公路;2005年01期
相关博士学位论文 前1条
1 田莉;基于离散元方法的沥青混合料劲度模量虚拟试验研究[D];长安大学;2008年
相关硕士学位论文 前4条
1 羊明;沥青混合料动态模量研究[D];长沙理工大学;2007年
2 韦琴;旧沥青路面再生利用技术研究[D];重庆大学;2006年
3 李龙;沥青混合料再生利用研究[D];长安大学;2003年
4 罗蓉;沥青路面废料再生利用研究[D];重庆交通学院;2003年
,本文编号:2187654
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2187654.html