钢筋锈蚀和重车超载下服役砼桥梁的疲劳损伤及寿命预测
[Abstract]:In the fatigue research of reinforced concrete members (or structures), fatigue test methods have always been the main means to study fatigue problems at home and abroad. With the development and optimization of finite element software, numerical simulation method has been gradually adopted by researchers for its advantages of low cost and strong repeatability. Numerical simulation and test methods complement each other in the study of reinforced concrete fatigue problem. Fatigue test provides the foundation for fatigue numerical simulation. For example, the initial material mechanics parameters used in the fatigue numerical simulation of reinforced concrete and the degenerative model of these parameters in the fatigue process are obtained by means of fatigue test. However, the fatigue test cycle is long, the cost is high, and the accurate numerical simulation can make up for the shortcomings of fatigue test, that is, the fatigue performance of reinforced concrete members (or structures) is simulated and studied on the basis of fewer fatigue tests. And even the simulation of the whole fatigue loading process. But in the current numerical simulation process, there are also many problems, For example, in the process of fatigue loading of reinforced concrete members or structures, the degradation model of mechanical parameters and the constitutive relation of materials are obtained by different scholars through different tests. So how to choose the numerical simulation reasonably to make the simulation results more accurate, more applicable and universal, is the current problem to be solved. In this paper, according to the progressive order, from the fatigue behavior of the composition material to the fatigue behavior of the reinforced concrete member and then to the fatigue performance of the reinforced concrete bridge structure, the main work of this paper is summarized as follows: 1. Based on the existing research results of fatigue of concrete materials, the degradation model and constitutive relation of various mechanical parameters during fatigue loading of concrete are discussed, and the applicability of these models is analyzed. The S-N curve equation of concrete fatigue is established, which is distinguished by the maximum stress level. Based on the existing research results of steel bar fatigue, the degenerative model and constitutive relation of various mechanical parameters during fatigue loading of steel bar are discussed, and the applicability of the model is analyzed. The model of fatigue residual strength degradation is established. The S-N curve equation of steel bar fatigue is established. Based on the multi-sample test data, the finite element numerical reference model (including static load reference model and fatigue reference model) for fatigue performance of structures is established by optimizing group analysis for each fatigue performance parameter degradation model. Combined with the model test and related test data, the fatigue degradation law of structural members is discussed. The prediction model is established for the evolution of mid-span deflection, concrete strain, reinforcement strain and residual ultimate bearing capacity with the fatigue loading times, respectively. The limit values of deflection, strain and residual bearing capacity under fatigue load are discussed, and a more accurate method for predicting the remaining service life of the structure is put forward. Based on the method of establishing the benchmark model, the finite element analysis model of Baihe Bridge of Jingmi Highway is established. Based on the investigation data of actual load, a fatigue vehicle model is established. Considering the rule of corrosion of steel bars and time-varying traffic volume, the fatigue performance of bridges in service life under the condition of overload, corrosion of steel bars and fatigue is studied. The life span is predicted.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U441.4
【参考文献】
相关期刊论文 前10条
1 王青;卫军;刘晓春;徐港;;钢筋混凝土梁疲劳累积损伤过程的等效静力分析方法[J];中南大学学报(自然科学版);2016年01期
2 罗小勇;欧阳祥森;周正祥;邴绎文;;锈蚀钢筋轴向拉伸疲劳试验研究[J];建筑材料学报;2015年06期
3 张培;雷冬;;疲劳荷载作用下的混凝土变形规律[J];河海大学学报(自然科学版);2015年01期
4 李士彬;汤红卫;张鑫;孙伟;;自然锈蚀钢筋的疲劳试验[J];建筑材料学报;2014年05期
5 王新玲;黄伟东;陈青萍;;HRBF500钢筋混凝土梁受弯疲劳性能理论研究[J];建筑结构;2014年16期
6 焦双健;王帅;郭勇;李江海;;滨海天然卵石混凝土性能研究[J];混凝土与水泥制品;2014年04期
7 雷兵;宋玉普;;基于ANSYS的部分预应力混凝土梁疲劳性能模拟[J];工业建筑;2013年09期
8 洪锦祥;缪昌文;石杏喜;万峗;;混凝土疲劳变形曲线三阶段的比例关系与应变速率[J];南京理工大学学报;2013年01期
9 余志武;李进洲;宋力;;重载铁路桥梁疲劳试验研究[J];土木工程学报;2012年12期
10 朱劲松;朱先存;;钢筋混凝土桥梁疲劳累积损伤失效过程简化分析方法[J];工程力学;2012年05期
相关博士学位论文 前7条
1 刘芳平;疲劳荷载作用后钢筋混凝土梁剩余承载力研究[D];重庆交通大学;2016年
2 朱红兵;公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D];中南大学;2011年
3 于秋波;HRB500级钢筋部分预应力混凝土梁受力性能研究[D];郑州大学;2008年
4 孟宪宏;混凝土疲劳剩余强度试验及理论研究[D];大连理工大学;2006年
5 曹伟;定侧压下混凝土三轴疲劳性能试验与理论研究[D];大连理工大学;2004年
6 赵东拂;混凝土多轴疲劳破坏准则研究[D];大连理工大学;2002年
7 吕培印;混凝土单轴、双轴动态强度和变形试验研究[D];大连理工大学;2002年
相关硕士学位论文 前9条
1 胡倩倩;往复荷载下混凝土结构疲劳性能的仿真模拟研究[D];重庆大学;2014年
2 张妍妍;锈蚀钢筋的疲劳性能研究[D];山东建筑大学;2013年
3 吕品;HRB500高强钢筋低周疲劳性能研究[D];大连理工大学;2011年
4 徐冲;超载下既有桥梁加固后疲劳性能试验研究[D];浙江大学;2011年
5 朱先存;钢筋混凝土桥梁在运营荷载下疲劳失效过程数值模拟[D];天津大学;2010年
6 夏云龙;预应力混凝土梁桥疲劳可靠性分析[D];长安大学;2009年
7 张钰雕;响螺湾海河开启桥结构性能及疲劳荷载谱研究[D];天津大学;2008年
8 王磊;既有钢筋混凝土桥梁模糊时变可靠性与承载力评估研究[D];长沙理工大学;2005年
9 杨顺存;混凝土破坏过程的数值模拟研究[D];河海大学;2004年
,本文编号:2193071
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2193071.html