基于Hadoop的海量交通数据研究与应用
[Abstract]:In order to better manage the urban road traffic system, people have established the intelligent transportation system. The traffic information is collected and the state of the road is monitored by installing various detection sensors on the city road. However, with the complexity of the road network system and the rapid increase of urban vehicle ownership, the intelligent transportation system has collected a large amount of low-value density information. How to quickly and accurately excavate the useful information to solve the urban road problem in these large-scale low-value data is the goal that the researcher pursues diligently now. In traffic problems, the discrimination and prediction of traffic congestion is an important field. In the past, the method of judging traffic congestion was to determine the normal congestion points by calculating traffic parameters and other data, and then to solve the congestion problem by planning roads and controlling traffic lights. The road state and the real-time command of the police are not taken into account. Moreover, with the increase of data, the geometric increase of computation cost a lot of time and lose the real time of traffic prediction. In addition, the division of traffic district is the middle level of traffic travel law, and reasonable division is helpful to establish effective traffic management measures. Based on the actual data of Hangzhou traffic system, including microwave detection data, floating vehicle GPS data, video surveillance data, road network data and so on, combined with the advantages of Hadoop platform for massive data processing, Do the following innovative research on traffic data mining applications: 1. In this paper, the concept of traffic jam point and the distributed detection algorithm are proposed and solved for the first time. It plays an important role in guiding the real-time optimization of limited police force, and it is essentially different from traffic state classification. By introducing historical congestion probability, the concept of "anomaly" and the distributed computing model are defined for the first time. Furthermore, the accuracy of real-time early warning is improved by "cumulative anomaly" effect. The algorithm has "self-learning" property, which is embodied in the continuous updating of historical congestion probability. Even if traffic organization and road infrastructure change, the applicability of the method will not be greatly affected by .2. A fast distributed density clustering algorithm based on mass traffic data is proposed, which avoids the influence of input parameters of general density clustering algorithm on data clustering, and improves the computational efficiency of density clustering algorithm in the face of big data set. The point density and the distance between points are calculated by the distributed method to cluster the points quickly. It provides the decision basis for the division of traffic district.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495
【相似文献】
相关期刊论文 前10条
1 ;中国第一款全线交通数据产品问世[J];全球定位系统;2008年06期
2 郭亚中;唐梦侠;季锦章;刘昊;;现有交通数据中心的升级方案研究[J];中国交通信息化;2013年S1期
3 叶亮;;“大数据”背景下我国交通数据管理应用的转型与发展[J];交通与运输(学术版);2013年02期
4 裴玉龙,马骥;实时交通数据的筛选与恢复研究[J];土木工程学报;2003年07期
5 刘振华;岑晏青;;省级交通数据中心建设模式浅析[J];中国交通信息产业;2007年02期
6 仝楠楠;;中国第一款全线交通数据产品问世[J];轻型汽车技术;2008年Z4期
7 韩海航;王强;;交通数据资源分析视图应用研究[J];公路交通科技(应用技术版);2008年04期
8 王国华;窦慧丽;郭敏;;基于小波分析的交通数据自适应消噪算法研究[J];计算机应用与软件;2011年10期
9 施莉娟;朱健;陈小鸿;张yN;;基础交通数据质量评价研究[J];交通信息与安全;2011年05期
10 牛世峰;姜桂艳;;交通数据质量宏观评价与控制方法[J];公路;2012年12期
相关会议论文 前5条
1 陈烨;朱景瑜;;实时交通数据在城市环境中的应用及展望[A];第七届中国智能交通年会优秀论文集——智能交通应用[C];2012年
2 赵一斌;关志超;张昕;胡斌;杨东援;;实时动态交通拥挤地图的交通数据特征值计算方法分析研究[A];2008第四届中国智能交通年会论文集[C];2008年
3 高明;李强;马富诚;;地图数据库交通数据的获取及显示技术研究[A];中国地理信息系统协会第四次会员代表大会暨第十一届年会论文集[C];2007年
4 晏磊;苗李莉;;面向ITS交通数据管理的方法探讨[A];中国地理信息系统协会第八届年会论文集[C];2004年
5 生昕格;;基于hadoop的交通云数据处理平台设计[A];第七届中国智能交通年会优秀论文集——智能交通应用[C];2012年
相关重要报纸文章 前1条
1 范文;我第一款全线交通数据产品问世[N];科技日报;2008年
相关博士学位论文 前1条
1 王清波;城市隧道智能监控系统及交通数据智能分析[D];武汉理工大学;2013年
相关硕士学位论文 前10条
1 张林杰;多源交通数据自动化采集与处理系统研发[D];长安大学;2015年
2 袁亚欣;基于Hadoop交通信息并行处理云平台的设计与实现[D];电子科技大学;2015年
3 张作强;面向公众的交通出行服务系统设计与实现[D];大连理工大学;2015年
4 倪升华;基于数据的交通拥堵评价与预测方法[D];浙江工业大学;2014年
5 王兴武;基于Hadoop的海量交通数据研究与应用[D];浙江工业大学;2015年
6 李红旗;中小城市ITS实时交通数据的质量控制方法研究[D];长安大学;2014年
7 唐永勇;面向ATMS的交通数据管理方法研究[D];吉林大学;2011年
8 李勇伶;服务于城市交通控制系统的交通数据处理技术研究[D];长安大学;2008年
9 赵禹乔;城市道路交通数据检测器优化综合布设方法研究[D];长安大学;2011年
10 王鸿博;智能交通数据信息分析与处理[D];浙江海洋学院;2015年
,本文编号:2198841
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2198841.html