基于云模型的城市快速路交通状态识别方法研究
[Abstract]:With the rapid increase of traffic demand, urban road traffic becomes increasingly saturated, which seriously restricts the development of social economy. In order to meet the needs of rapid travel among urban groups, the major central cities have begun to plan and build high speed road network. As the basic framework of urban traffic system, expressway bears a large proportion of motor vehicle travel volume. Due to the good accessibility and dense ramp design of expressway, the traffic running situation is worsening year by year, and the efficiency of transportation is greatly decreased, which is not in accord with its function orientation seriously, and the main performance is: the intensity of congestion intensifies. Congestion spread and congestion time continues to grow. Therefore, improving the efficiency of urban expressway traffic becomes the primary task of urban traffic management. Accurate extraction of real-time and reliable traffic state information is the premise of intelligent traffic management, and traffic state has strong randomness and nonlinear characteristics, resulting in the expressway traffic state recognition is very complex. Cloud model is a good tool for qualitative and quantitative interconversion, which provides a new research method for expressway traffic state recognition. In this paper, based on the improved cloud model, the identification method of expressway traffic state is studied, which includes the following aspects: (1) the current research progress of traffic state recognition is reviewed. The cloud model is chosen to identify the traffic state of expressway, and the evaluation index of traffic state is screened to avoid the interference of the two-flow characteristic of the flow to the identification result. The speed and time share are selected as evaluation indexes. (2) the method of data preprocessing is studied to prepare the data for identifying the model. To identify and deal with the error data, the time series method based on the time series weight is designed to correct the lost data. Through the analysis of an example, it is shown that the time varying characteristics of the traffic flow parameters can be better reflected by the data alignment method based on the time series weight. The complement results are closer to the real value. (3) the method of expressway traffic state recognition based on cloud model is established. K-means clustering analysis is used to cluster the historical data, and the initial template cloud is obtained by the reverse cloud generator algorithm, and the trapezoid cloud is used to improve the template to obtain the template cloud of the actual expressway traffic state. Furthermore, the evaluation index is dynamically weighted by the information entropy function, and the traffic state and traffic congestion index of the expressway are obtained. (4) the effectiveness of the model identification is evaluated through specific cases. Based on the microwave data of Chengdu's second ring viaduct, the recognition results of the proposed model and the velocity threshold method / V / C ratio threshold method are compared and analyzed to verify the validity of the traffic state recognition model based on the cloud model. The results show that the method of traffic state recognition based on cloud model can solve the problem that the traditional normal cloud model has low recognition accuracy in extreme cases. It can reflect the real state of traffic and has strong practicability and portability.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491
【参考文献】
相关期刊论文 前10条
1 聂佩林;龚峻峰;;一种路网交通流参数的融合预测方法[J];交通运输系统工程与信息;2015年06期
2 伍育红;;聚类算法综述[J];计算机科学;2015年S1期
3 褚鹏宇;刘澜;尹俊淞;卢维科;;融合时空信息的短时交通流预测[J];计算机工程与应用;2016年12期
4 周继彪;陈红;闫彬;张文;冯微;;基于云模型的地铁换乘枢纽拥挤度辨识方法[J];吉林大学学报(工学版);2016年01期
5 李瑞敏;马玮;;基于BP神经网络与D-S证据理论的路段平均速度融合方法[J];交通运输工程学报;2014年05期
6 贾兴利;许金良;;基于云模型的地震区公路震害风险评估[J];同济大学学报(自然科学版);2014年09期
7 俞志富;李俊武;王利华;;一种基于云模型和证据理论的融合识别方法[J];信息与控制;2014年01期
8 李嘉;刘春华;胡赛阳;王芳;;基于交通数据融合技术的行程时间预测模型[J];湖南大学学报(自然科学版);2014年01期
9 凌武能;杭乃善;李如琦;;基于云支持向量机模型的短期风电功率预测[J];电力自动化设备;2013年07期
10 李悦;陆化普;张永波;蔚欣欣;;基于云模型的城市快速路交通状态评价方法研究[J];公路工程;2013年03期
相关会议论文 前1条
1 王福建;韦薇;王殿海;祁宏生;;基于宏观基本图的城市路网交通状态判别与监控[A];第七届中国智能交通年会优秀论文集——智能交通技术[C];2012年
相关博士学位论文 前5条
1 丁宏飞;城市快速路交通信息提取与协同优化研究[D];西南交通大学;2015年
2 杨泳;城市快速路交通拥堵形成、传播规律及消散控制策略研究[D];西南交通大学;2015年
3 郭洪洋;信息约束条件下的路网行程时间可靠性研究[D];西南交通大学;2014年
4 敖谷昌;城市快速路交通状态特性及关联分析方法研究[D];北京交通大学;2014年
5 高宏岩;融合移动信号流的高速公路交通拥挤预警与调控[D];山东科技大学;2011年
相关硕士学位论文 前5条
1 王尧;城市道路交通拥堵评价与判定方法研究[D];北京工业大学;2014年
2 万佳;基于云模型的路网交通拥堵状态判别算法研究[D];哈尔滨工业大学;2012年
3 李家伟;城市道路交通拥挤状态识别关键技术研究[D];西南交通大学;2009年
4 刘静;基于状态划分的交通流短时预测方法研究[D];北京交通大学;2007年
5 张怀天;基于云模型的数据挖掘及其在交通流系统中的应用[D];天津大学;2007年
,本文编号:2203267
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2203267.html