基于能量分析的乘员约束系统优化研究
[Abstract]:With the rapid development of automobile technology, traffic accidents are also increasing. As the main protective device, airbag, seat belt and other occupant restraint system can reduce the casualty rate of the occupant. Therefore, the passenger restraint system is particularly important in the field of automobile safety. At present, the passenger restraint system is developing towards diversification and intelligence. Because it is a multi-parameter input and multi-response output system, it will play an important role in shortening the research and development cycle and reducing the cost. In order to solve this problem, based on a new research point of view of occupant constraint system, this paper proposes an optimization method for crew constraint system based on energy analysis from the point of view of energy transfer and distribution in the positive collision process. The main contents are as follows: (1) the main research contents and methods in the field of automobile safety are introduced. The research ideas and theoretical analysis are summarized to determine the research content and technical route of this paper. (2) based on the real vehicle crash test, the vehicle frontal impact simulation model is established by using MADYMO7.5 software and its validity is verified. Through sensitivity analysis, five important parameters were determined from many parameters of the occupant constraint system, and the orthogonal test method was used. According to the energy theory and the energy theory, the occupant restraint system with different parameters is divided into four parts: head, chest, hip and leg. Through the analysis of the energy of each part of the vehicle forward impact process, the energy transfer path of the dummy and the energy absorption of the occupant restraint system are clarified. (4) the orthogonal test data are fitted and analyzed by using MATLAB. The relationship between the comprehensive damage value (WIC) of the occupants and the energy absorption distribution of the constrained system is determined qualitatively and then quantitatively from the relational diagrams and fitting formulas. The results showed that the WIC value was negatively correlated with the peak of energy absorption of safety shoulder straps, safety belts and car seats, and positively correlated with the peak of energy absorption of knee pads and floors. (5) selecting seat belts, car seats, etc. The parameters of the occupant constraint subsystem which has obvious correlation with the comprehensive damage value of the occupants WIC are analyzed and the relationship between the parameters of the constraint subsystem and the peak energy absorption value is constructed one by one. Combined with the relationship between the WIC value and the peak energy absorption of each constraint subsystem, the optimal parameter combination of the occupant constrained system is determined. Therefore, the fast optimization of the constrained system in this paper is accomplished by the energy method. The optimum results are as follows: the elongation of the fabric with safety straps and belts is 13, the ignition time of the preload is 16.7ms, the limiting force of the safety belts is 5400Ns, the inclination angle between the kneading plate and the vertical direction is 24.5o, and the stiffness of the kneepad is 93o of the initial value. In addition, when the friction coefficient of the floor is reduced properly and the seat cushion inclination angle is adjusted to 9.5 掳with the horizontal direction, the maximum energy absorption value of the safety shoulder strap, safety belt and car seat can be reached. The peak energy absorption of the kneepad and floor reaches the minimum value. Under the optimal parameter combination, the WIC value is 0.4023, which is 7.35% lower than the original value, and the performance optimization of the occupant constrained system is completed.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.61
【参考文献】
相关期刊论文 前10条
1 孟妮;;碰撞过程中驾驶员座椅后移设计[J];山东工业技术;2016年21期
2 马桃;张维刚;唐婷;张扬;;基于全局敏感性分析和Kriging代理模型的汽车乘员约束系统多参数优化研究[J];中国机械工程;2014年13期
3 商恩义;;正面偏置碰撞试验中驾驶员侧安全气囊的吸能特性[J];汽车安全与节能学报;2014年02期
4 彭金栓;徐磊;邵毅明;;汽车主动安全技术现状及发展趋势[J];公路与汽运;2014年01期
5 李丽;朱西产;王晶晶;马志雄;;汽车膝部气囊设计与优化[J];汽车技术;2014年01期
6 向志军;;汽车座椅构件吸能设计研究[J];汽车零部件;2013年02期
7 王玉龙;白中浩;刘曜;周雪桂;;基于乘员类型特征识别的智能安全气囊控制系统[J];汽车安全与节能学报;2012年03期
8 唐波;;汽车安全带的性能研究以及相关探讨[J];汽车与配件;2011年14期
9 李铁柱;李光耀;高晖;陈涛;;基于可靠性优化的汽车乘员约束系统的性能改进[J];中国机械工程;2010年08期
10 张金换;李志刚;许述财;;车辆碰撞中乘员各部位动态响应及能量关系[J];汽车安全与节能学报;2010年01期
相关博士学位论文 前3条
1 洪亮;多工况下驾驶员座椅被动安全性研究[D];江苏大学;2014年
2 刘杰;乘员类型的自动识别及其在智能乘员约束系统中的应用[D];吉林大学;2007年
3 葛如海;汽车正面碰撞乘员约束系统匹配研究[D];江苏大学;2007年
相关硕士学位论文 前10条
1 唐婷;汽车乘员约束系统多参数优化理论及方法研究[D];湖南大学;2014年
2 马桃;多参数条件下汽车乘员约束系统匹配设计及稳健性研究[D];湖南大学;2014年
3 董龙;汽车正面碰撞乘员约束系统仿真与稳健优化方法研究[D];浙江大学;2014年
4 王洪海;汽车智能式安全气囊控制技术研究[D];吉林大学;2013年
5 高峰;针对C-NCAP的某乘用车正面乘员约束系统仿真优化与试验验证[D];吉林大学;2013年
6 张晓伟;针对尾撞下乘员颈部损伤保护的平动吸能座椅性能分析[D];清华大学;2012年
7 陈超;汽车碰撞乘员约束系统双自由度力学模型建立及应用[D];吉林大学;2011年
8 裴磊;基于稳健性优化的乘员约束系统性能改进[D];湖南大学;2011年
9 蔡君;汽车正面碰撞乘员约束系统模型建立及乘员保护分析[D];武汉理工大学;2011年
10 张燕;基于能量管理技术的某轿车正面碰撞约束系统参数设计[D];吉林大学;2009年
,本文编号:2225402
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2225402.html