基于贝叶斯网络的高速公路交通事故研究
[Abstract]:Expressway has the characteristics of fast, closed, all-interchange traffic control mode, which provides a good condition for vehicle driving. The rapid development of freeway has greatly improved the traffic travel situation in our country. At the same time for our country's economic and social construction to provide favorable support. However, with the rapid increase of highway mileage, traffic accidents have also increased significantly, although the situation of expressway traffic accidents in China has been greatly improved in recent years. But the highway traffic accident still caused the serious harm to the people's life and property safety. Therefore, it is of great significance to analyze the expressway traffic accidents in order to improve the safety of expressway and to prevent and reduce the occurrence of traffic accidents. First of all, based on the research method of expressway accident distribution law, according to the existing expressway accident data and foreign highway traffic accident distribution law are compared and analyzed, the statistical analysis method is applied. The characteristics of expressway traffic accidents in China are obtained by analyzing the time distribution law, climate distribution law, accident form distribution law and vehicle type distribution law of expressway traffic accidents. Then, this paper analyzes the relationship between human, vehicle, road and environment in expressway traffic system operation and traffic accidents, and aims at the characteristics of high dimensional and nonlinear accident information. Support vector machine (SVM) algorithm is used to analyze the severity of accidents. The classification model is constructed by using support vector machine (SVM) algorithm, and the traffic accident data collected from expressway are studied, and the nonlinear SVM model is established according to the two classification method. Finally, the traffic accidents collected in this paper are classified according to the types of vehicles, which are divided into bus accidents, bus-truck accidents and truck accidents, and in the process of classification and modeling, The corresponding Bayesian network is established for the whole accident database and the three categories in order to explore the potential traffic accident law in different vehicle categories. Five indexes are introduced: correct rate, sensitivity, specificity, sensitivity and specificity harmonic mean (HMSS) index. The classification effect of the established Bayesian network model is evaluated by using ROC curve. Then, the results of Bayesian network structure learning show the different dependencies of each accident impact variable in different classification.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.3
【参考文献】
相关期刊论文 前9条
1 韦凌翔;陈红;王龙飞;赵丹婷;邵海鹏;;诱发道路交通事故的关键因子分析方法研究[J];交通信息与安全;2015年01期
2 詹伟;吕庆;尚岳全;;高速公路隧道群交通事故灰色马尔可夫预测[J];吉林大学学报(工学版);2014年01期
3 马壮林;邵春福;李霞;;基于Logistic模型的公路隧道交通事故严重程度的影响因素[J];吉林大学学报(工学版);2010年02期
4 马壮林;邵春福;李霞;;高速公路隧道交通事故严重程度的影响因素分析[J];北京交通大学学报;2009年06期
5 董国君;哈力木拉提·买买提;余辉;;基于RBF核的SVM核参数优化算法[J];新疆大学学报(自然科学版);2009年03期
6 李世民;孙明玲;关宏志;;基于累积Logistic模型的交通事故严重程度预测模型[J];交通标准化;2009年Z1期
7 王兴玲,李占斌;基于网格搜索的支持向量机核函数参数的确定[J];中国海洋大学学报(自然科学版);2005年05期
8 李文权,王炜;交通事故的时间分布规律[J];中国安全科学学报;2005年04期
9 张孟奇,郭青;网格搜索法在送电线路铁塔基础计算机优化设计中的应用[J];电力建设;1998年07期
相关博士学位论文 前3条
1 孙轶轩;基于数据挖掘的道路交通事故分析研究[D];北京交通大学;2014年
2 张慧永;基于贝叶斯网络的交通事故态势研究[D];吉林大学;2013年
3 李海生;支持向量机回归算法与应用研究[D];华南理工大学;2005年
相关硕士学位论文 前5条
1 梁素芳;弯坡路段交通事故分析与预测[D];吉林大学;2016年
2 程雨;基于贝叶斯网络的列控系统故障诊断研究[D];北京交通大学;2014年
3 徐晶;高速公路交通安全微观评价方法及应用研究[D];北京交通大学;2011年
4 赵杨东;高速公路追尾事故成因分析及预防对策研究[D];哈尔滨工业大学;2007年
5 沙爱敏;高速公路交通事故分析及预防对策研究[D];东南大学;2006年
,本文编号:2235285
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2235285.html