铁路隧道单双线分岔过渡段地震动力响应研究
[Abstract]:Bifurcation tunnel is usually composed of long span section, multi arch section and small net distance section. Its structure type and stress distribution of surrounding rock are more complex, which is the most difficult engineering in design and construction, and it is easy to occur serious earthquake damage in earthquake. Therefore, it is of great engineering value and significance to study the seismic dynamic response of the bifurcation tunnel in the high intensity seismic area and the measures to resist and reduce the earthquake. In this paper, taking the transition section of Yangjiaping tunnel of Cheng-lan railway as the engineering background, the seismic dynamic response of the bifurcation tunnel is studied by numerical calculation, and the measures to resist and reduce the earthquake are studied, and the anti-seismic measures suitable for the project are put forward. The main work and research results of this paper are as follows: (1) the difference of seismic dynamic response between middle partition wall and middle rock column of bifurcation tunnel under two working conditions is analyzed by numerical calculation. The results show that the peak values of tensile stress and compressive stress in the middle wall of the multi-arch tunnel are larger than those in the middle rock column of the tunnel with small net distance, and the shear stress of the middle partition wall is larger than that of the medium rock column, and with the increase of the width of the middle rock column, the shear stress of the middle wall is larger than that of the middle rock column. The maximum compressive stress is gradually transferred from the edge corner position of the middle rock column to the center position of the middle rock column. It is recommended to adopt the scheme with a middle partition wall. (2) the 3-D numerical model of the transition section of Yangjiaping Tunnel with single and double lines bifurcation is established and its seismic dynamic response is studied. The results show that the horizontal relative displacement of the arch roof and inverted arch of each tunnel is large, the relative deformation of diagonal line of each tunnel has obvious abrupt changes during the transition of bifurcation, multi-arch and small net distance, the longitudinal relative displacement of large arch and double-hole single line is small, and the relative deformation of the diagonal line of each tunnel is relatively small during the transition of bifurcation, multi-arch and small net distance. The deformation of the retaining head wall is large, which is prone to earthquake damage, the peak value of internal force near the side arch shoulder and arch foot of the middle rock column in the transitional section of the middle partition wall and the middle rock column is abrupt, and the lining structure at the left, right arch foot and arch waist of the continuous arch section and the small net distance section is subjected to more stress. The internal force of arch foot and arch waist at the head wall is relatively large, which is the weak part of earthquake resistance. (3) the anti-seismic effect of grouting range, retaining wall parameter and damping joint parameter are studied. The results show that the larger the grouting range is, the smaller the internal force and displacement of the structure are, the better the effect is before and after taking the retaining head wall in the grouting range, the smaller the material stiffness of the retaining head wall is, the smaller the internal force of the structure is. The internal force of the structure in a certain range around it can be significantly reduced by setting the damping joint, but the internal force of the lining structure in the farther position has little effect (4) on the position of the arch foot of the tunnel. Especially the arch foot near the middle wall and the middle rock column is the weak part of earthquake resistance.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U459.1
【参考文献】
相关期刊论文 前10条
1 鲍艳;李文辉;安军海;李晓霖;;近接长距离并行地铁隧道的地震响应特性[J];黑龙江科技大学学报;2016年02期
2 马殷军;;小净距空间交叉隧道地震响应分析[J];兰州交通大学学报;2015年03期
3 申玉生;邹成路;靳宗振;王京伟;;穿越软硬交界面隧道结构动力响应特性研究[J];现代隧道技术;2015年03期
4 马建;孙守增;赵文义;王磊;马勇;刘辉;张伟伟;陈红燕;陈磊;魏雅雯;叶飞;;中国隧道工程学术研究综述·2015[J];中国公路学报;2015年05期
5 朱爱山;;基于S.M.F的小净距公路隧道抗震性能分析[J];西部探矿工程;2014年09期
6 李静;;不同偏压状态下浅埋连拱隧道地震动力响应分析[J];湖南交通科技;2013年03期
7 任辉龙;段群苗;蔡永昌;;浅埋连拱隧道爆破的数值模拟[J];爆破;2012年04期
8 黄娟;彭立敏;雷明锋;施成华;赵丹;;浅埋小净距偏压隧道地震响应特性与承载力安全分析[J];铁道科学与工程学报;2012年04期
9 周佳媚;袁松;高波;;小净距隧道地震动力响应下的围岩应力场[J];公路交通科技;2012年02期
10 毕强;吴金刚;;大跨分岔式隧道结构设计关键技术研究[J];隧道建设;2011年06期
相关会议论文 前1条
1 靳晓光;熊亮;;大跨度连拱隧道支护结构地震稳定性分析[A];第三届全国岩土与工程学术大会论文集[C];2009年
相关博士学位论文 前3条
1 赵冬冬;城市地铁地下结构地震反应的试验研究与数值模拟[D];清华大学;2013年
2 徐冲;分岔隧道设计施工优化与稳定性评价[D];北京交通大学;2011年
3 王峥峥;跨断层隧道结构非线性地震损伤反应分析[D];西南交通大学;2009年
相关硕士学位论文 前10条
1 陈威;高速公路小净距隧道爆破震害控制技术研究[D];华东交通大学;2016年
2 王勇;浅埋双洞隧道地震响应规律研究[D];中国石油大学(华东);2013年
3 黄宇;刘家湾连拱隧道地震响应分析及抗震研究[D];长沙理工大学;2013年
4 汪仁义;双圆小净距隧道地震动响应研究[D];湖南大学;2012年
5 郑清;山岭隧道震害分析及洞口段地震动力响应研究[D];西南交通大学;2010年
6 贺喜;小净距隧道动力响应特性分析[D];重庆大学;2009年
7 王正松;双连拱隧道洞口段地震动力响应及减震措施研究[D];西南交通大学;2008年
8 袁松;地震动力响应下公路隧道合理净距的研究[D];西南交通大学;2008年
9 凌燕婷;公路连拱隧道与小净距隧道地震动力响应对比研究[D];西南交通大学;2009年
10 王义军;国道318线黄草坪隧道地震动力响应及减震措施研究[D];成都理工大学;2005年
,本文编号:2241703
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2241703.html