单点信号交叉口智能控制的优化模型和方法研究
[Abstract]:With the promotion of urbanization and the increasing number of motor vehicles, urban road traffic is facing great pressure, congestion problems emerge in endlessly, and delays mainly occur at intersections. The signal control of intersections plays an important role in the healthy operation of road traffic. Because the traditional timing signal control method can not adapt to the random change of traffic flow, the intelligent control method which can adjust the timing scheme in real time according to the change of traffic flow has gradually become an effective solution to improve the traffic efficiency of intersection. Firstly, based on the traditional signal timing, an optimal timing control model is proposed. A multi-objective optimization model based on particle swarm optimization (PSO) was established by considering delay, parking rate and capacity. At the same time, the delay and parking rate are reduced and the capacity of intersection is increased. The validity of the model is verified by practical case study. Secondly, the intelligent control method based on fuzzy control is studied. The fuzzy control method includes green time delay module and phase sequence optimization module. The green light delay module adjusts the green light time according to the vehicle queue length, and the phase sequence optimization module adjusts the phase order according to the demand of different phases for traffic weight. The fuzzy control scheme can intelligently adjust the timing scheme according to the changing traffic flow and reduce the average vehicle delay at the intersection. Then, on the basis of fuzzy control, this paper introduces neural network to establish a fuzzy neural network signal control method. This method can take advantage of the autonomous learning of neural network, train and learn the fuzzy neural network with a large amount of practical data, and obtain an intelligent control scheme which can adapt to traffic flow in different conditions, and effectively improve the running efficiency of intersection. Finally, the traffic signal control simulation model is established based on the actual intersection, and the three control methods proposed in this paper are simulated and analyzed. The comparison of delay shows that the control effect of fuzzy neural network control is the best, the delay relative timing control is 20% -30%, fuzzy control is the second, and relative timing control is 10% -15%. Finally, the variation law of vehicle queue length and timing scheme in the process of fuzzy neural network control simulation is analyzed in detail, the relationship between queue length and timing result is discussed, and the scientific nature of the control method is verified.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.54
【参考文献】
相关期刊论文 前10条
1 雒冰;魏丽英;;基于粒子群算法的多效益交叉口信号配时模型[J];山东科学;2016年06期
2 熊驰飞;吕智林;叶嫣;;考虑排放因素的公交优先信号控制优化方法研究[J];交通信息与安全;2012年04期
3 郭炜杰;包晓安;;单交叉路口交通灯实时配时算法的研究[J];工业控制计算机;2012年03期
4 陈小红;钱大琳;石冬花;;基于慢行交通的交叉口信号配时多目标优化模型[J];交通运输系统工程与信息;2011年02期
5 何兆成;招玉华;赵建明;曾伟良;;基于状态判别的单点交叉口信号配时优化方法[J];公路交通科技;2010年07期
6 曹成涛;徐建闽;;单交叉口交通多目标控制方法[J];计算机工程与应用;2010年16期
7 许伦辉;李民生;;基于神经网络实现的交叉口可变相序公交优先模糊逻辑控制[J];现代交通技术;2009年03期
8 马莹莹;杨晓光;曾滢;;信号控制交叉口周期时长多目标优化模型及求解[J];同济大学学报(自然科学版);2009年06期
9 王莉;王明哲;周丰;郭法滨;;实时自适应交通信号控制CPN建模分析[J];公路交通科技;2008年06期
10 于万霞;杜太行;郑宏兴;于越;;基于粒子群的模糊神经网络交通流量预测[J];微计算机信息;2008年04期
相关博士学位论文 前2条
1 周申培;考虑排放因素的城市交叉口交通信号控制策略的研究[D];武汉理工大学;2009年
2 于万霞;基于流量预测的城市单交叉路口多相位交通信号的控制技术[D];河北工业大学;2008年
相关硕士学位论文 前10条
1 谢丽珠;考虑车辆尾气排放因素的公交信号优先控制策略及微观仿真研究[D];北京交通大学;2015年
2 龚辉波;考虑多车型排放特性的交叉口信号控制多目标优化模型[D];北京交通大学;2014年
3 曾松林;城市单交叉路口交通信号的控制方法研究[D];西南交通大学;2013年
4 彭飞;城市道路平面交叉口信号配时优化与仿真研究[D];北京交通大学;2012年
5 邵维;基于TD方法的单交叉口信号配时优化研究[D];长沙理工大学;2012年
6 刘金明;基于多目标规划的城市道路交叉口信号配时研究[D];北京交通大学;2011年
7 李年源;同时考虑行人和机动车效益的交叉口信号控制优化模型[D];北京交通大学;2010年
8 陈虹;城市路口交通信号的自适应模糊控制策略研究[D];西南交通大学;2010年
9 胥勇;城市干线信号协调控制方法研究[D];大连理工大学;2009年
10 李政伟;城市单交叉口信号配时设计与仿真[D];北京交通大学;2008年
,本文编号:2251600
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2251600.html