基于TEI@I-IOWA高速公路交通量预测研究
[Abstract]:Expressway has the advantages of high energy, high efficiency, fast access and so on. It is an important link between regions and regions. It can promote the prosperity and development of economic areas along the route and play an important role in the process of national economic development. However, the expressway also has many shortcomings, such as large area of land, large investment, long construction cycle, difficulty in raising funds, and so on. In the early stage of construction, a large number of feasibility arguments should be made, and a reasonable construction scale can be determined to bring into full play the greatest economic benefits. The traffic volume of expressway is the most important factor to determine the scale of expressway construction. It is necessary to forecast and analyze the traffic volume demand no matter whether it is a new expressway or an extension expressway. Therefore, it is necessary to accurately predict the trend of highway traffic volume change and provide a basis for the decision making of highway construction. This paper focuses on the study of highway traffic volume prediction method, in order to achieve accurate highway traffic volume prediction. The change of expressway traffic volume is affected by many factors. Changes in one or more factors can cause traffic volume to change in an uncertain direction. Therefore, the expressway traffic volume prediction is a complicated system work, which needs to explore the changing rules of traffic volume development and improve the prediction algorithm constantly, so as to achieve the purpose of accurate prediction of traffic volume change. On the basis of studying the existing technical methods of expressway traffic volume prediction, this paper introduces the TEI@I methodology, and based on its idea of "decomposing first and then integrating", decomposes the expressway traffic volume prediction into three parts: linear, nonlinear and time series. According to the characteristics of each part, the corresponding method is selected to carry out the single prediction. Finally, the combined forecasting model of expressway traffic volume is constructed by integrating the single prediction results with the induced ordered weighted average (IOWA) operator. The combined prediction model is applied to the case analysis. The results of practical research show that the forecasting effect of the combined forecasting model of expressway traffic volume based on TEI@I methodology is obviously better than that of single forecasting method in terms of prediction accuracy, overall error and prediction stability. Can accurately predict the changing trend of traffic volume.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.14
【参考文献】
相关期刊论文 前10条
1 李香静;刘向龙;刘好德;杨新征;;我国城市交通规划模型研究应用现状及发展趋势[J];交通运输研究;2016年04期
2 陈俐光;陈峰;胡建宾;李江波;;基于多元回归的路面质量评价指标相关性研究[J];施工技术;2016年S1期
3 潘鑫;;南阳市城镇化特征与发展战略思考[J];上海城市规划;2016年03期
4 徐建军;关志伟;刘晓锋;;TrancCAD在交通预测“四阶段法”中的应用[J];天津职业技术师范大学学报;2015年04期
5 瞿红梅;李焕良;许汉刚;彭小波;;基于灰色预测理论的应急救援物资储备模型[J];华南地震;2015年02期
6 张婧丽;;高速公路交通量预测及分析——太原二环高速凌井店至龙白段交通量预测及分析[J];山西交通科技;2015年02期
7 戴青山;;基于IOWA算子的安徽省人均GDP的组合预测模型[J];蚌埠学院学报;2014年04期
8 吴雪花;;应用于月度用电量预测的小波分析法[J];江苏电机工程;2014年02期
9 吴凤平;曹艳国;;基于IOWA算子的港口吞吐量组合预测方法[J];水利经济;2013年05期
10 赵懿琼;;繁峙至大营高速公路交通量预测与分析[J];山西交通科技;2012年06期
相关硕士学位论文 前10条
1 赵艳阳;区域干线公路网交通态势评估与分析[D];长安大学;2015年
2 宋国壮;改扩建公路交通量预测影响因素及其敏感性分析[D];东北林业大学;2014年
3 李斌;高速公路后评价项目的交通分析与预测研究[D];天津大学;2013年
4 刘晓玲;基于多维时空参数的道路短期交通流预测研究[D];大连海事大学;2012年
5 胡文凯;高速公路交通量预测误差分析[D];长安大学;2011年
6 钟韬;基于IOWA算子的组合预测在四川省民用车数量中的应用研究[D];西南交通大学;2010年
7 赵琪;高速公路收费站收费预测研究[D];长安大学;2010年
8 方宣;大都市绕城高速公路交通量预测关键技术研究[D];长安大学;2009年
9 陈蓉;话务量分析和多种预测模型的比较研究[D];北京邮电大学;2008年
10 瞿炳华;城市新建道路交通量诱增模式研究[D];东北林业大学;2006年
,本文编号:2253740
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2253740.html