当前位置:主页 > 科技论文 > 路桥论文 >

刘家峡大桥施工阶段计算及缆索线形控制

发布时间:2018-10-24 22:10
【摘要】:刘家峡悬索桥是我国西北地区最大跨度的桥梁,主跨536m。它是目前国内相同类型大跨公路桥梁中最窄的悬索桥,桥宽仅15.6m,宽跨比仅为1/34.4。大桥桥塔首次采用了大直径钢管混凝土,直径达3000mm,为目前世界上直径最大的钢管混凝土结构。桥塔设计造型新颖美观,采用伊斯兰建筑风格,独到的体现了地域少数民族文化特色。该桥为536m单跨桁式加劲梁悬索桥,在设计成桥状态下,跨中理论垂度为48.7m,垂跨比约为1:11,主缆中心距为15.6m,吊索标准间距8.0m。在施工过程中,对主缆的线形控制、特别是基准索股的安装、定位锁定的监测与控制是本桥线形能否达到设计要求的关键一环。本文对刘家峡大桥的整个施工过程进行了跟踪检测研究,在施工检测过程中,采用BNLAS进行建模,整个施工过程共划分为23个施工阶段,随着施工阶段的不断变化,得出了各个阶段各控制点的位移以及应力的理论数据,作为在现场施工检测过程中的参照标准。对现场施工过程实施控制点的位移监测和控制截面的应力监测,将现场所得的实测数据与理论设计数据进行比对、分析,从而做出相应的调整,得出各个施工阶段是否满足设计要求的结论,对施工过程进行了有效的监控。理想成桥状态结构恒载状态下主塔塔顶没有偏位;对于主塔而言设计理想状态不会产生弯矩。但是各跨作用于主缆的荷载并不相等,特别是施工主桁吊装过程,中跨垂度随主桁吊装不断变化,桥塔塔顶产生向跨中的偏移,主塔产生弯矩,为了保证成桥阶段的索鞍位于设计位置,设计按三次顶推办法将索鞍顶推到位,以消除桥塔的弯矩。本文对索鞍偏心安装、施工过程进行桥塔偏位、主缆垂度实时监测与控制,选测适当时机进行顶推,对顶推量进行现场实时调整,最终获得的理想的主缆线形,桥塔的偏心弯矩也控制在了设计容许的范围之内。
[Abstract]:Liujiaxia suspension bridge is the largest span bridge in northwest China, with a main span of 536 m. It is the narrowest suspension bridge of the same type of long span highway bridge in China at present. The bridge width is only 15.6 m and the ratio of width to span is only 1 / 34. 4. The concrete filled steel tube (CFST) with a diameter of 3000mm is used for the first time in the tower of the bridge, which is the largest concrete filled steel tube structure in the world. The tower design is novel and beautiful, adopting Islamic architectural style, which embodies the cultural characteristics of regional minorities. The bridge is a single span truss suspension bridge with 536m span. In the design of the bridge, the theoretical sag of the span is 48.7 m, the aspect to span ratio is about 1: 11, the central distance of the main cable is 15.6 m, and the standard spacing of the slings is 8.0 m. In the construction process, the main cable alignment control, especially the installation of the reference cable strands, the monitoring and control of positioning and locking is the key to whether the alignment of the bridge can meet the design requirements. In this paper, the whole construction process of Liujiaxia Bridge is tracked and studied. In the process of construction inspection, BNLAS is used to model the model. The whole construction process is divided into 23 construction stages, which changes with the construction stage. The theoretical data of displacement and stress of each control point in each stage are obtained, which can be used as the reference standard in the field construction inspection process. The displacement monitoring of the control point and the stress monitoring of the control section are carried out in the field construction process. The measured data are compared with the theoretical design data, and the corresponding adjustment is made. The conclusion of whether each construction stage meets the design requirements is concluded, and the construction process is effectively monitored. The top of the main tower does not deviate under the dead load state of the ideal bridge structure, and the bending moment is not generated in the design of the ideal state for the main tower. However, the loads of each span acting on the main cable are not equal, especially in the process of hoisting the main truss, the sag of the middle span changes with the hoisting of the main truss, the top of the tower shifts to the middle of the span, and the bending moment of the main tower is produced. In order to ensure that the cable saddle in the bridge stage is located in the design position, the cable saddle is pushed into place according to the method of three push-ups to eliminate the bending moment of the bridge tower. In this paper, the eccentric installation of cable saddle, the misalignment of bridge tower during construction, the real-time monitoring and control of the sag of the main cable, the selection of appropriate time to push, the real time adjustment of the pushing quantity, and the final ideal main cable shape are obtained. The eccentric bending moment of the bridge tower is also controlled within the range permitted by the design.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U445.4;U448.25

【参考文献】

相关期刊论文 前8条

1 李子奇;樊燕燕;;解析法计算自锚式悬索桥成桥状态的主缆线形对比分析[J];兰州交通大学学报;2011年04期

2 刘志翁;刘世忠;武维宏;;钢桁式加劲梁悬索桥动力特性分析[J];兰州交通大学学报;2010年04期

3 齐东春;王昌将;沈锐利;林恰;;悬索桥施工中鞍座顶推的研究[J];中国工程科学;2010年07期

4 孙胜江;王雷刚;;悬索桥主索鞍可控状态自由滑移控制[J];桥梁建设;2010年01期

5 姜军;忻刚明;孙胜江;;大跨悬索桥加劲梁吊装阶段的施工控制[J];公路;2009年12期

6 孙胜江;姜军;;悬索桥索塔容许偏位及主索鞍顶推分析[J];公路;2007年10期

7 何为;项贻强;徐兴;;悬索桥施工中索鞍顶推的小步快跑原则[J];浙江大学学报(工学版);2007年01期

8 林丽霞,丁南宏,吴亚平;双索悬索桥自振特性分析[J];兰州交通大学学报;2005年04期

相关硕士学位论文 前1条

1 慕玉坤;大跨径悬索桥锚跨张力控制研究[D];长安大学;2003年



本文编号:2292708

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2292708.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a0681***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com