基于高速公路收费数据的挖掘预测分析与应用研究
[Abstract]:As the most direct product of expressway network toll management system, expressway toll collection data has the characteristics of rich fields, substantial content, large amount of data, timely updating, and so on. A lot of information hidden under the basic data can be obtained by analyzing and mining the charging data in depth. In this paper, based on the characteristic analysis of expressway toll flow data, from the aspects of algorithm optimization, model establishment, case analysis and application comparison, the prediction of expressway vehicle travel path, cross-section traffic flow and section travel time are studied. On the one hand, it can improve the traveler's travel choice, on the other hand, it can also improve the management level of highway management department. In view of the fact that the related prediction research at home and abroad only pays attention to a single aspect, but lacks the perfect and systematic comprehensive prediction mining research, this paper mainly completes the following work: first, a preprocessing method of the original toll data of expressway is proposed. Aiming at the large proportion of abnormal data in charge data, in order to minimize the interference of abnormal data, the paper puts forward that the abnormal data can be divided into redundant data, missing data and noise data. The feasibility of the method is verified by an example. Secondly, the vehicle travel path prediction model is established based on Markov prediction method. The models are built to improve the prediction accuracy. In order to solve the state transition probability matrix in the forecasting method, the statistical method and the linear equation group method are selected to solve and analyze respectively. The results show that the statistical method is more suitable for the forecasting characteristics of the charging data. Thirdly, on the basis of path prediction, the traffic state prediction of expressway section is studied. The section traffic flow and vehicle travel time are selected as the predictors of road traffic state. A cross-section traffic flow statistic method based on toll data is proposed to predict the traffic flow on the basis of the data. The analysis of examples shows that the prediction of cross-section traffic flow based on adaptive Kalman filter algorithm can avoid the defects of Kalman filter algorithm and improve the prediction accuracy. Then, the correlation between section travel time and cross-section traffic flow is demonstrated, and a density-based road travel time estimation method is proposed, and the algorithm is modified. The feasibility and accuracy of the algorithm are verified by an MATLAB example. Finally, based on the above research results, the forecast application scenario of highway toll data is put forward. The traffic prediction is carried out according to the different traffic characteristics of weekdays weekends and holidays. Some conclusions can be drawn and used in the research of related fields.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U495
【参考文献】
相关期刊论文 前10条
1 赵建东;徐菲菲;张琨;白继根;;融合多源数据预测高速公路站间旅行时间[J];交通运输系统工程与信息;2016年01期
2 肖润谋;李彬;陈荫三;;基于大数据的高速公路运输趋势分析[J];交通运输工程学报;2015年05期
3 符方睿;罗方;;广东省高速公路ETC/MTC混合车道实施方案[J];中国交通信息化;2015年04期
4 李卉;申孟宜;展国殿;;大数据在我国高速公路超限问题研究中的应用初探[J];统计研究;2014年10期
5 薛文婷;张波;李署坚;;组合导航中一种新息自适应卡尔曼滤波算法[J];全球定位系统;2014年04期
6 宋子房;;公路短时车流量预测模型研究[J];科学决策;2014年04期
7 李慧兵;杨晓光;;面向行程时间预测准确度评价的数据融合方法[J];同济大学学报(自然科学版);2013年01期
8 蒋亚平;郭俊亮;;基于马尔柯夫过程的交叉路口车流量预测模型研究[J];郑州轻工业学院学报(自然科学版);2012年06期
9 沈强;;基于高速公路收费数据的路网运行状态评价[J];公路交通科技;2012年08期
10 刘拥华;孙静怡;何民;贾利民;庄文君;;高速公路货物运输量统计方法[J];公路交通科技;2012年04期
相关硕士学位论文 前7条
1 周悦;基于预测控制的道路交通生态控制方法研究[D];浙江工业大学;2015年
2 孙会;基于压缩感知理论的重建算法研究[D];中国科学技术大学;2014年
3 杨春霞;海峡西岸经济区高速公路货物运输发展研究[D];长安大学;2014年
4 王浩;基于收费数据的高速公路旅行时间自适应插值卡尔曼滤波预测研究[D];北京交通大学;2014年
5 李敏;基于高速公路联网收费数据的路径交通量求解方法研究[D];华南理工大学;2012年
6 王延钧;治理超限超载运输存在的问题及其主要对策[D];吉林大学;2011年
7 常涛;改进型MapReduce框架的研究与设计[D];北京邮电大学;2011年
,本文编号:2301156
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2301156.html