基于动态模糊神经网络的交通信号智能控制研究
[Abstract]:Since the beginning of the 21st century, with the rapid development of our economy and science and technology, the number of cars on the roads has exploded, and the traffic congestion in cities has become more and more serious, which has caused further environmental pollution and energy waste. Traffic accidents and a series of problems, especially the haze weather to people a great deal of trouble. Urban traffic congestion mainly occurs at road intersections. Because of the unreasonable allocation of green time in the traditional traffic signal control mode at intersections, it sometimes causes unnecessary congestion. A reasonable control system has a profound impact on improving the traffic situation. In road traffic network, traffic flow is nonlinear, real-time and fickle. In view of this characteristic of traffic flow, intelligent control method can be applied to urban traffic signal control. This paper mainly studies the special five fork junctions and adjacent intersections in the city. The fuzzy system and neural network are combined into the traffic signal control, with the aim of reducing the average vehicle delay. Realize the rational allocation of green light time at five fork junctions. Firstly, the basic parameters of traffic signal control, the statistical distribution of traffic flow, the evaluation index system of traffic quality at road intersection and the detection of traffic flow are briefly introduced. Secondly, the fuzzy control is applied to the traffic signal control of the five bifurcations to realize the intelligent control of the five bifurcations. In the case of low peak period and peak period of traffic flow, the fuzzy control and timing control are used to simulate the five-fork intersection control, respectively. The simulation results show the advantages of fuzzy control. Thirdly, aiming at the problem of wasting green time and switching phase frequently in phase sequence control of traffic signal, the dynamic fuzzy neural network theory is introduced to realize multi-phase variable phase sequence dynamic control at five junctions. Taking the five fork junctions formed by Songzhou Road, Zhenxing Street and Linghuang Street in Chifeng as an example, the simulation study is carried out to verify the performance of the multi-phase variable phase sequence dynamic control method. Finally, the coordinated control of adjacent intersections is studied and analyzed. For the adjacent intersections with small distance from the middle section, the correlation is relatively strong. In the control, the influence of the traffic flow of the middle section entering and leaving the intersection on the green phase is considered. The simulation results show that the coordinated control is more reasonable than the common isolated intersection control.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.5
【参考文献】
相关期刊论文 前10条
1 张伟;肖日东;邓晶;;基于遗传算法的动态模糊神经网络城市快速路入口匝道控制[J];公路交通科技;2017年02期
2 吴晓强;黄云战;赵永杰;;基于模糊神经网络的温室温湿度智能控制系统研究[J];中国农机化学报;2016年04期
3 闫飞;田福礼;史忠科;;城市道路交叉口信号的鲁棒迭代学习控制[J];中国公路学报;2016年01期
4 慕飞飞;张惠珍;;基于遗传算法的单点交叉口信号配时优化[J];上海理工大学学报;2015年06期
5 杨兆升;曲鑫;林赐云;邴其春;龚勃文;;考虑低排放低延误的交通信号优化方法[J];华南理工大学学报(自然科学版);2015年10期
6 钱伟;孙玉娟;;城市干线交通信号的模糊协调控制研究[J];河南理工大学学报(自然科学版);2014年05期
7 张邻;吴伟明;黄选伟;;基于动态信号配时的非线性规划模型[J];公路交通科技;2014年08期
8 付华;李文娟;孟祥云;王桂花;王灿祥;;IGA-DFNN在瓦斯浓度预测中的应用[J];传感技术学报;2014年02期
9 游黄阳;许伦辉;;防止短连线交叉口溢流的单点信号配时优化[J];系统工程理论与实践;2014年01期
10 黄大荣;宋军;李淑庆;向红艳;;网络化动态调控下城市路网交通拥堵控制技术综述[J];交通运输工程学报;2013年05期
相关博士学位论文 前3条
1 叶宝林;城市路网交通信号协调控制理论与方法研究[D];浙江大学;2015年
2 杨祖元;城市交通信号系统智能控制策略研究[D];重庆大学;2008年
3 马文阁;基于模糊控制的单交叉口信号控制方法与算法研究[D];大连海事大学;2008年
相关硕士学位论文 前9条
1 陈姗;城市道路平面交叉口优化设计与评价[D];长安大学;2015年
2 许森琪;基于动态模糊神经网络的聚丙烯熔融指数预报建模优化研究[D];浙江大学;2015年
3 王t,
本文编号:2306835
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2306835.html